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In the paper, a survey of theoretical and applied results obtained in the framework of the scientific school at the 

Department of Information Systems and Mathematical Methods in Economics, Perm State University, is given. It co-

vers the period from 2008 to 2015. The theoretical results are based on the principal statements of the contemporary 

theory of functional differential equations worked out by the participants of the Perm Seminar under the leadership of 

Prof. N.V. Azbelev (1922–2006). The focus of attention is on problems of forecasting, boundary value problems (prob-

lems of attainability), control problems, and problems of stability for the dynamic models that allow one to take into 

account aftereffects and effects of impulse disturbances (shocks).  For the mentioned problems, sufficient conditions of 

the solvability are obtained, methods of constructing program controls and the corresponding trajectories are proposed.  

Algorithms of the computer-assisted study of the control problems are worked out, including algorithms of correction 

for certain ill-posed problems. The applied results use the achievements of the theory and are implemented in the form 

of software tools for the study and solution of the real economy problems such as forecasting, control and stability anal-

ysis as applied to models of socio-economic development of the regions of the Russian Federation and the Russian 

Economy as a whole. 
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Introduction  

Here we give a survey of theoretical and ap-

plied results obtained in the framework of the scientific 

school at the Department of Information Systems and 

Mathematical Methods in Economics, Perm State Uni-

versity, that covers the period from 2008 to 2015. The 

earlier works are presented in the paper [2; 3] devoted 

to the 50th anniversary of Faculty of Economics, Perm 

State University, and in the monographs [1; 46]. The 

theoretical results are based on the principal statements 

of the contemporary theory of functional differential 

equations worked out by the participants of the Perm 

Seminar under the leadership of Prof. N.V. Azbelev 

(1922–2006). The focus of attention is on problems of 

forecasting, boundary value problems (problems of 

attainability), control problems, and problems of stabil-

ity for the dynamic models that allow to take into ac-

count aftereffects and effects of impulse disturbances 

(shocks). For the mentioned problems, sufficient condi-

tions of the solvability are obtained, methods of con-

structing program controls and the corresponding tra-

jectories are proposed. Algorithms of the computer-

assisted study of the control problems are worked out, 
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including algorithms of correction for certain ill-posed 

problems.  

The applied results use the achievements of 

the theory and are implemented in the form of software 

tools for the study and solution of the real economy 

problems such as forecasting, control and stability 

analysis as applied to models of socio-economic devel-

opment of the regions of the Russian Federation and 

the Russian Economy as a whole.  

The works are supported by the Russian 

Foundation for Basic Research (Project No.10-01-

96954 “Mathematical and Computer Modelling of the 

Ecology-Economic Region State: Problems of Identifi-

cation, Forecasting, Attainability, and Control”), Min-

istry of Education and Science of the Russian Federa-

tion  (Contract  No. 02.G25.31.0039 “Elaboration of 

HighTech Information Analytical Platform for Solving 

the Problems of Strategy Planning and Forecasting in 

State Control, Social Area, Science, and Industry”, 

Resolution of  the Russian Federation Government No. 

218 of 09.04.2010), and the PROGNOZ Company, 

Perm.  

1. Control problems

Dynamic models under consideration cover a 

wide class of models arising under studying real-world 

economic and ecology-economic processes with taking 

into account impulse actions (considered as elements of 

control), impulse external disturbances, and aftereffect 

(time delay). Impulse actions result in jump-like 

changes in the system state and lead to introducing 

discontinuous solutions of differential equations with 

ordinary derivative.  

These equations are considered in the space 

( )DS m that is a finite dimensional extension of the 

traditional space of absolutely continuous functions 

(see below). Such an approach to the systems with 

jumps was proposed in [5]. It doesn’t use the compli-

cated theory of generalized functions (i.e. distributions) 

and finds many applications. Conditions of the solva-

bility to the control problems for linear functional dif-

ferential systems with trajectories from ( )DS m as well 

as  constructive  methods and algorithms of construct-

ing program controls are presented in  [31; 32; 36; 37]. 

Therewith possible jumps of trajectories are considered 

as components of control actions in combination with 

the traditional control from the space  
2

L , and the aim 

of control is defined as the attainment of a prescribed 

value by each of the given linear functionals whose 

number  in total is not equal to the dimension of the 

system. The latter circumstance and the general form of 

the on-target functionals are used in [30] to hold a tra-

jectory in a neighborhood of a given normative trajec-

tory during a given period of time. Some possible ef-

fects arising due to the use of  impulse controls jointly 

with controls from 
2

L  are discussed in [31], where it is 

shown, in particular, that the use of impulse control  

can reduce the total cost of the given goals attainment.  

Here we follow the notation    and the princi-

pal statements of the theory of functional differential 

equations  in its part concerned with linear impulsive 

systems  [15, p. 123–130] (see also [16, p. 124–134]; 

[17, p. 100–108]). Denote by [0, ]L L T  the space of 

Lebesgue summable functions :[0, ] nz T R  with the 

norm 
0

|| || | ( ) |
n

T

L n
z z s ds , where | |

n
stands for a 

norm in  nR  (in the sequel we shall omit the index n if 

the dimension of the space is obvious). To describe the 

trajectories with jumps of the first kind at the points 

1 2
...

m
t t t T  

1
( 0),t  we follow [5] and intro-

duce the space ( )DS m of piece-wise  absolutely con-

tinuous functions :[0, ] nx T R  of the form 

[ , ]

10

( ) ( ) (0) ( ) ( ),
k

t m

t T k

k

x t z s ds x t x t  (1) 

where 
n

z L , ( ) ( ) ( 0)
k k k

x t x t x t  and 

[ , ]
( )

kt T
t is the characteristic function of the seg-

ment [ , ]
k

t T . The norm in ( )DS m  is defined by the 

equality 

( )
1

|| || || || | (0) | | ( ) |
m

n k nDS m L
k

x x x x t . 

Next we denote by AC [0,Т] the space of absolutely 

continuous :[0, ] nx T R  with the norm 

|| || || ||
AC L

x x  | (0) |
n

x . Thus ( )DS m is a finite-

dimensional extension of AC [0,Т]. 

    To describe the system under control, we in-

troduce the linear operator : 

0

( )( ) = ( ) ( , ) ( ) ( ,0) (0) .

t

x t x t K t s x s ds A t x        (2) 

Here the elements ( , )
ij

k t s of the kernel 

( , )K t s are measurable on the set 

{( , ) : 0 }t s s t T and such that   the estimates 

| ( , ) | ( ), , 1,..., ,
ij

k t s t i j n  

hold on this set with a   summable on [0, ]T , and the 

elements of ( )n n -matrix ( )A t  are summable on 

[0, ]T  too. The operator : ( )DS m L  is bounded. 

Functional   differential   system  y f

covers differential equations with concentrated and/or 

distributed time delay and Volterra integro-differential 

systems.  

The space of all solutions to the homogeneous 

system ( )( ) 0, [0, ],x t t T   is of dimension 

.n mn Let 1{ ,..., }n mnx x  be a basis in this space. The 

matrix 1{ ,..., }n mnX x x   is called the fundamental 

matrix (we assume, for definiteness, that rX E ). The 

so-called principal boundary value problem 

,x f rx    is uniquely solvable for any 

, n mnf L R   , and its solution has the representa-

tion 

0
( ) ( ) ( , ) ( )

t

x t X t C t s f s ds   ,    (3) 

where ( , )C t s is the Cauchy matrix. 

Let : ( ) NDS m R  be the linear bounded 

functional. There takes place the representation 
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0
0

1

( ) ( ) (0) ( ),
mT

k k

k

x s x s ds x x t


     

where elements of measurable ( N n )-matrix are 

bounded in essence, and , 0,..., ,k k m  are ( N n )-

matrices with real-valued elements. 

Consider the control problem 

, (0) , .x Fu f x x             (4) 

Here 
2:F L L is a linear bounded operator, 

2L  is the 

space of square summable functions :[0, ] ru T R

with the inner product T

0
, ( ) ( )

T

u v u t v t dt  ( T stands

for transposition). The goal of control in (4) is given 

with the use of a vector-functional : ( ) NDS m R : it  

have to take the vector value   on a trajectory of the 

system x Fu f   under a control u . 

In this survey, we restrict ourselves to one 

completely formulated main theorem that gives a nec-

essary and sufficient condition of the solvability to 

problem (4).  As for the rest, we refer the reader to the 

corresponding papers and give only brief comments.  

To formulate the theorem, we introduce the 

following designations:  

1 2
0

( ) ( ) ( ) ( , ) ,

( ) ( ) ( | ),

T

s

T

s s C s d

s X s ds

      

     




 

where 
1 is the ( )N n -matrix whose columns are 

first  n columns of ( )N n mn  -matrix  ; 

T

0
[ ]( )[ ] ( ) ,

T

M F s F s ds     

here 
2:F L L   is the adjoint operator to F . 

Theorem 1 ([32]). The problem (4) is solvable 

if and only if the linear algebraic system  

2 1

1 0
0

[ ( ,..., )]

( ) ( ) ( )

m

T

M

s f s ds

 

 

       

      
(5) 

is solvable with respect to ( )nm N -vector 

( , ).col    Every solution 
0 0( , ),col  

1

0 0 0( ,..., ),mcol   of the system (5) deter-

mines the control that solves the problem (4) : 
T

0 0( ) , 1,..., , ( ) [ ] ( ) .k

kx t k m u t F t      

Let us give some explanations how one could 

use this theorem to hold a system in a given neighbor-

hood of the normative trajectory. Without loss of gen-

erality we consider the case of the zero normative posi-

tion. Thus it is sufficient to hold a system in a neigh-

borhood of the origin. Let us fix a 
1 (0, )T T and first 

solve the control problem 

1, [0, ], (0) , ( ) 0.x Fu f t T x x T       (6) 

At the point 
1t T , the system takes the right 

position. If take off  the control at this moment, that is 

put 
1( ) 0, [ , ]u t t T T  , then, even for the case of 

( ) 0f t  , the system with aftereffect will lost the zero 

position as it has in general a nonzero prehistory which 

plays  the role of disturbance. In order to hold the sys-

tem in a neighborhood of zero, we use the following 

additional conditions. Let us add to the conditions of 

(6) the equalities  

1

( ) ( ) 0, 1,2,..., .
T

j
T

V s x s ds j          (7) 

Here 
1( ,..., ); ,..., ,...j j jV diag v v v v is a line-

arly independent system of elements from
2 1[ , ]L T T  

such that their linear span is everywhere dense in this 

space. Under some natural assumptions, for any given 

radius of the ball in 
2 1[ , ]L T T , centered by the origin, 

there exists a   such that conditions (7) provide us 

with the property that the corresponding trajectory x 

belongs on the segment [
1 , ]T T  to the above mentioned 

neighborhood. 

In [31] the case is considered when the matrix 

М  in (5) is nonsingular. In this case, problem (5) is 

solvable in the class of controls 
2u L  for any collec-

tion of impulse actions, and impulses can be used  to 

minimize the total cost of control. Let us note that in 

economic dynamic problems, impulse control is based 

on the possibility of change of the system state instant-

ly at certain time moments due to the corresponding 

investments as an addition to a regular financing. As it 

takes place, estimating the total cost, we can take into 

account concrete parameters of financial program, say,

parameters and conditions of credits. As is shown in 

[30], by virtue of instant financial actions one can re-

duce the total cost of the given goals attainment.

In [38], a closely related question is discussed, 

namely, the question of the dependence  the total cost 

of control on a time delay of the control implementa-

tion. An approach to the problem of optimal delay is

proposed. 

In [4; 40; 42; 43], for systems with discrete 

time, the problem of correction of inconsistent control 

problems is considered. Two kinds of correction are 

under study, namely, the structural one and the re-

source correction. The algorithms of the correction are

based on the results of I.I. Eremin and his collaborators 

[23]. It should be noted that the situation of incon-

sistency (ill-posedness) is met with quite often in prac-

tice of the study of real-world economic problems  [4] . 

Dynamic models considered in [21; 34; 35] 

are concrete realizations of the so-called abstract 

functional differential equation  (AFDE). Theory of 

AFDE is thoroughly treated in [16; 17]. On the other 

hand, the systems under consideration are very typical 

ones met with in mathematical modeling economic 

dynamic processes and covers many kinds of dynamic 

models with aftereffect (integro-differential, delayed 

differential, differential difference, difference) and with 

impulsive perturbations resulting in system's state 

jumps at prescribed time moments. The equations of 

the system contain simultaneously terms depending on 

continuous time, [0, ]t T  and discrete, 

1{0, ,..., , }Nt t t T , this is why the term "hybrid" seems 

to be suitable. As this term is deeply embedded in the 

literature in different senses, we follow the authors 

used the more definite name "continuous-discrete 

systems" (CDS). For the considered CDS’s,  in [21; 36; 

37] the question  on the solution representation is
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solved, the conditions of the solvability of boundary 

value problems and control problems are obtained in 

the form which is used under computer-assisted 

studying these problems. In [36; 37] the main result is a 

detailed description of all controls that solve the con-

trol problem by the controls generated by the discrete 

subsystem. The questions of optimal correction applied 

to inconsistent hybrid control problems are studied in 

[40; 41]. 

In [33] the system under consideration is sub-

ject to impulse disturbances which result in trajectory 

jumps. It is assumed that neither initial moments nor 

values of jumps are known in advance. A construction 

of regular (not impulse) control is proposed, which 

solves the control problem with a given set of objective 

functionals, despite of the action of impulses. It as-

sumed also that the information about performed jumps 

is available to the beginning of the action of correcting 

controls, which are positional with respect to jumps of 

the realized trajectory. For the successive compensa-

tion of occurring jumps, a feedback (additional sum-

mands in motion equations) is introduced. An example 

given in this paper demonstrates that in the case of ig-

noring the proposed procedure the solution of the con-

trol problem is  more expensive (needs a greater re-

source).  

In [35] the boundary value problems 

,x f x    

for functional differential systems are considered when 

the number of boundary conditions is greater than the 

dimension of the system in the case of approximate 

fulfilment of boundary conditions: 

, | |Nx f x     .         (8) 

The boundary value problems (8) are 

connected with studying the problems on the 

attainability  for given indexes of development to the 

economic system under consideration. The approach is 

based on theorems whose conditions allow one to 

check up them by special reliable computing 

procedures. Dynamic models under consideration 

cover many kinds of dynamic models with aftereffect 

(integro-differential, delayed differential, differential 

difference).  

2. Problems of Stability

The recent general theory of functional differ-

ential equations [15; 16; 17] allowed us to give a clear 

and concise description of their basic properties includ-

ing the properties of solution stability. At the same 

time broad classes of linear hybrid functional differen-

tial systems with after-effect (LHFDSA) arising in 

many applications are not formally covered by the de-

veloped theory and remain out of view of specialists 

using functional differential and difference systems 

with after-effect for simulation of real processes. Be-

low we suggest hybrid functional differential analogues 

of fundamental assertions of the theory of functional 

differential equations for problems of stability. 

2.1. First, let us consider the case when one of 

the equations is a linear differential one and is defined 

on a set of discrete points, and the other one is a linear 

functional differential equation with aftereffect 

(LFDEA) on a semiaxis. For this case we describe the 

W-method scheme of N.V. Azbelev 

Let us denote the infinite matrix with the col-

umns ( 1), (0), (1),..., ( ),y y y y N  of size ,n  by 

{ ( 1), (0), (1),..., ( ), }y y y y y N   and the infinite 

matrix with columns (0), (1),..., ( ),g g g N  the of size 

.n  by { (0), (1),..., ( ), }g g g g N . 

Each infinite matrix 

{ ( 1), (0), (1),..., ( ), }y y y y y N   

can be associated with the vector function 

[ 1,0) [0,1)( ) ( 1) ( ) (0) ( )y t y t y t      

[1,2) [ , 1)(1) ( ) ... ( ) ( )N Ny t y N t       

Similarly, each of the infinite matrices 

{ (0), (1),..., ( ), }g g g g N can be associated with the 

vector function 

[0,1) [1,2)( ) (0) ( ) (1) ( ) ...g t g t g t     

[ , 1)... ( ) ( )N Ng N t    

Let us denote the vector function 

( ) ([ ]),y t y t  [ 1, )t   , by ( ) [ ]y t y t  and the vector 

function ( ) ([ ]),g t g t  [0, )t  , by [ ]g t . 

The set of vector functions [ ]y   is denoted by 

0
. The set of vector functions [ ]g  is denoted by . 

Let ( )( ) ( ) ( 1) [ ] [ 1]y t y t y t y t y t        at 1,t  and 

( )( ) ( ) [ ] (0)y t y t y t y     at [0,1).t  

The abstract hybrid functional differential sys-

tem takes the form 

11 12 11 12

21 22 21 22

,

.

x y x F x F y f

x y y F x F y g

    

     
 (9) 

Here and below n  is the space of vectors 
1col{ ,..., }n    with real components and the norm 

|| || n . Introduce the space L  of locally summable 

:[0, ) nf   with semi-norms 

[0, ]

0

|| || || ( ) || n

T

L Tf f t dt   for all the 0T   and the space

D  of locally absolutely continuous functions 

: [0, ) nx    with seminorms 

[0, ] [0, ]|| || || || || (0) || nD T L Tx x x 

for all the 0T  . 

Also introduce the space  of vector functions 

[0,1) [1,2)( ) (0) ( ) (1) ( ) ...g t g t g t     

[ , 1)... ( ) ( )N Ng N t  

with the semi-norms 
0

|| || || || n
T

T

i

i

g g


 for all the 

0T   and the space 
0

 of vector functions 

[ 1,0) [0,1)( ) ( 1) ( ) (0) ( )y t y t y t      

[1,2) [ , 1)(1) ( ) ... ( ) ( )N Ny t y N t       

with the semi-norms 
0

1

|| || || || n
T

T

i

i

y y


 for all the 

1T   . 
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The operators 
11 11, :F D L , 

12 12 0, :F L , 
21 21, :F D , 

22 22 0, :F 

are assumed to be continuous linear and Volterra. 

Let 
11 12

21 22

 
 
 

. Then (9) can be written 

as { , } col{ , }.x y f g  

Suppose that for any (0) nx  and 

( 1) ny    the Cauchy problem for the «model» sys-

tem 0 0

11 12 ,x F x F z z    0 0

21 22 ,y F z F y u     where 

the operators 0

11 : ,F D L  0

12 0: ,F L  0

12 0: ,F L  

0

21 : ,F D  0

22 0:F   are assumed to be continu-

ous linear and Volterra. Then the model system can be 

written as 
0{ , } col{ , }.x y z u Suppose its solution can 

be represented as: 

11 12 11 12

21 22 21 22

(0)
.

( 1)

U U W Wx x z

U U W Wy y u

        
         

        
 

Here 
0: L D   is the continuous Volterra 

operator, Cauchy operator for the system, 

11 12

21 22

,
W W

W W

 
  
 

 
0: n nU D    is the funda-

mental matrix for the system, 

11 12

21 22

.
U U

U
U U

 
  
 

 

If the elements col{ , }:[0, ) [ 1, )x y     
n n  forming the Banach space 

0D M  

( ) ( )n n  B M (space ,DD  space 

0 0 ,n
M M    space ,LB  space ,M  

B, M  are the Banach spaces) have certain specific 

properties, such as 

0 1,0,1,

sup || ( ) || sup || ( ) || ,n n

t k

x t y k
 

  

and the Cauchy problem is uniquely solvable for the 

equation { , } col{ , }x y f g  with the bounded linear 

operator 
0:   D M B M , then the solutions of 

this problem have the same asymptotic properties. This 

follows from the theorem given below [44].  

Theorem 1. Assume :  B M  

0D×M  is the bounded Cauchy operator of the Cau-

chy problem for the model equation 

0
{ , } col{ , }x y f g , col{ (0), ( 1)} col{0,0}x y    and 

U  is the fundamental matrix of the model equation 

0
{ , } col{0,0}.x y   Here 

0 0
:   D M B M . As-

sume the linear operator 
0

:   D M B M  is bound-

ed, C  is the Cauchy operator of the Cauchy problem 

{ , }x y    col{ , },f g  col{ (0), ( 1)}x y     col{0,0}  

and X  is the fundamental matrix of the equation 

{ , } col{0,0}.x y   Then  for  the   equality 

{ } { , } { } { , }n n n nU C X  B,M B,M  (10) to 

hold true it is necessary and sufficient that the operator 

 (the operator ) has a bounded inverse 
1( ) :   B M B M

    0 01

0 0( ) :   D M D M , 

where  
0

0 0{col{ , } :x yD M D M     

col{ (0), ( 1)} col{0,0}}.x y    

Corollary 1 [44]. If the operator 

0:   D M B M is bounded and 

|| ( ) || 1B M B M     is true or 

0 0
0 0

0 ) )
|| ( ) || 1

(D M (D M  
   is true, then equality 

(10) holds true as well. 

In the case when (10) holds true (when the so-

lution spaces of the model equation and equation under 

study coincide), we say that the equation 

{ , } col{ , }x y f g  has the property 
0D M , or, in 

short, the equation is 
0D M -stable. 

The concept of 
0D M -stability relates to the 

monograph by J.L. Massera and J.J. Shaeffer on the 

admissibility of pairs of spaces [39] and with the mon-

ograph by E.A. Barbashin on the solution property 

preservation at the accumulation of perturbations [20]. 

Assume that the model equation [13–19; 28] 

and Banach space B  with the elements of the space L  

( LB , this embedding is continuous) are selected so 

that the solutions of this equation possess asymptotic 

properties we are interested in. 

Suppose, for example, 
0

sup || ( ) || n

t

x t


  . 

Then, putting 
11

def

x x x z    , we introduce the Ba-

nach space L
 of measurable and essentially bounded 

functions : [0, ) nz    with the norm 

0

vraisup || ( ) || n

t

z t


   as the Banach space B . The 

space 
11

( , )D L


 generated by the model equation con-

sists of solutions of the form 

  ( )

11 11

0

( ) ( ) ( )( ) ( )

t

t s tx t z t t e z s ds e        

(
n , z L ). 

These solutions are bounded 

(
0

sup || ( ) || n

t

x t


  ) and their derivative x x z    is in 

L
. All the solutions of this equation form the Banach 

space with the norm 

11( , )|| ||D Lx


 = 

= 
0

vraisup || ( ) ( ) || || (0) ||n n

t

x t x t x


    , 

which is linearly isomorphic to the Sobolev space 
(1)[0, )W   with the norm 

(1) [0, )
0 0

|| || sup || ( ) || +  vraisup || ( ) ||n nW
t t

x x t x t
 

 

 . 

Here in after this space is referred to as 
LW


. 

Here 
LW D

 , this embedding is continuous. 

Similarly, for the Banach space LB we in-

troduce the Banach space 
11

( , )D B  with the norm 

11( , )|| ||Dx B
 = || || || (0) || nx x x B

. 

Here the embedding LB  is assumed to be 

continuous. Assume that the operator 11  acts contin-
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uously from the space B  into the space B , and the 

operator 
11

acts from space n into the space B . 

This condition is equivalent to the fact [13–16] that the 

space 
11

( , )D B is linearly isomorphic to the Sobolev 

space with the norm 

(1)
[0, )

|| || || || || ||
W

x x x

 

B
B B

. 

Hereinafter this space is referred to as 
BW

( DBW , this embedding is continuous). 

The equation 
11
x z with the operator 

11
:

B
BW  is 

11
( , )D B -stable if and only if it is 

strongly B -stable. 
11
x z  is strongly B - stable if 

for any zB  each solution x  of this equation has the 

property xB  and xB  [14, Ch. IV, § 4.6; 4]. 

2.2. Let us consider the scheme from subsec-

tion 2.1 for two equations (9). The operators 

11 : ,D L  
12 0: ,L  

21 : ,D  
22 0: 

are considered as reduction to pairs ( , ),B BW 0( , ),M B  

( , ),B MW  
0( , ).M M  These operators are assumed to be 

Volterra linear and bounded operators. 

Assume that the general solution of the equa-

tion 
22 y g  for gM is the space of 

0M  and is 

represented by the Cauchy formula: 
[ ]

22 22

0

[ ] [ ] ( 1) [ , ] [ ].
t

s

y t Y t y C t s g s


    

Let 
[ ]

22 22

0

( )[ ] [ , ] [ ],
t

s

C g t C t s g s




22 22( ( 1))[ ] [ ] ( 1).Y y t Y t y    

Then every solution y  of the second equation 

in (9) has the form: 

22 21 22 22( 1) .y C x Y y C g      

Substituting the first equation into (9) we ob-

tain 

11 12 11 12 22 21 12 22 12 22( 1) ,x y x C x Y y C g f      

11 12 22 21 1 12 22 12 22( 1) .x C x f f Y y C g       

Let 
11 12 22 21,C   then the first equation 

in (9) takes the form of 
1.x f  

Suppose the Volterra operator 0: ( ) B BW

is Volterra invertible ( the Cauchy problem for 1x f

possess the following property: at any 1f B  its solu-

tions are x BW ). Thus, we solved the problem, when 

for equation (9) at any { , }f g  B M  its solutions are 

{ , } .x y  B MW  

Example 1. Consider the following two equa-

tions: 

( ) ( ) [ ] ( ),x t ax t by t f t   [0, ),t     (11) 

[ ] [ 1] [ ] [ ],y t dy t cx t g t     [0, ),t   

putting 

(0) ( 1) (0) [ ] [ 1] [ ]y dy c y t dy t cx t       

 [ ] (0),g t g   [0,1).t  

Let us introduce the following spaces: 

00 0{ : || ||y y
    = 

1,0,1,

sup || ( ) || }n

k

y k


  , 

{ : || ||g g
    = 

0,1,

sup || ( ) || }.n

k

g k


   

If we introduce the operator 

( )( ) ( 1), 1,Sy t dy t t    ( )( ) 0, [0,1)Sy t t  , then 

the second equation takes the form 

( ) ( )( ) ( )y t Sy t cx t   = 

= 
1( ) ( ) ( 1)g t g t dy t   , [0,1)t , 

( ) ( )( ) ( )y t Sy t cx t   = ( )g t , [1, )t  . 

Let us consider the operator :S   . We 

know that the operator ( ) :I S     is Volterra 

invertible if and only if the spectral radius  ( )S


 is 

less than one. For S  the condition ( ) 1S


  is 

equivalent to the inequality | | 1d   [47, p. 87, p. 140]. 

Let us put 

11( )( ) ( ) ( ),x t x t ax t  0,t 

12( )[ ] [ ],y t by t  0,t 

21( )( ) [ ],x t cx t  0,t 

22( )[ ] [ ] ( )[ ],x t y t Sx t   0t  . 

Now we  build the Cauchy function 
22C  and 

the fundamental solution 
22Y for the equation 

[ ] [ 1] [ ] :y t dy t g t    

[ ]
1 [ ]

0

[ ] ( 1) ( )
t

t t s

s

y t d y g s d 



     

22 22[ ] ( 1) ( )[ ].Y t y C g t    

Out of this we can express [ ]y t  of the second 

equation of (11): 
[ ]

1 [ ]

0

[ ] ( 1) ( [ ] [ ])
t

t t s

s

y t d y g s cx s d 



      

22 22[ ] ( 1) ( ( ))[ ].Y t y C g cx t     

Substituting the obtained y  into the first formula of (9) 

(or (11)) we get 

11 12( )( ) ( )[ ] ( ) ( )x t y t x t ax t   

[ ]
1 [ ]

0

( 1) ( [ ] [ ]) ( ).
t

t t s

s

bd y b g s cx s d f t 



      

Further we have 

11 12 22 21( )( ) (( ) )( ) ( ) ( )x t C x t x t ax t      

[ ]
[ ] 1

1

0

[ ] ( ) ( ) ( 1)
t

t s t

s

bc x s d f t f t bd y 



     

[ ]
[ ]

0

[ ] .
t

t s

s

b g s d 



   

It is evident that 1f L  if | | 1.d   

Let us write the Cauchy formula for 
[ ]

[ ]

11 1

0

( )( ) [ ] ( ) :
t

t s

s

x t bc x s d f t



   

[ ]
[ ]

11 11

00

( ) ( ) (0) ( , )( [ ]

t s
s i

i

x t X t x C t s bc x i d 



  

1( )) .f s ds  
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We have 
11( ) ,atX t e  ( )

11( , ) .a t sC t s e   For 

a positive 0a  , we can estimate:
[ ]

[ ]

11
0 00

sup | ( , ) [ ] |

t s
s i

t i

C t s bc x i d ds

 

  

[ ]
[ ]

0 00

sup | | | | || ||

t s
at as s i

L
t i

bc e e d ds x


 

 

 
   

 
  

0
0

1
| | sup || ||

1 | |

t

at as

L
t

bc e e ds x
d 





    
 

 
1 1

| | || || .
1 | |

Lbc x
a d 

   


 

Hence, the norm of operator 
11 22bC cC  is less 

than 1 if 

| | (1 | |).bc a d   

Thus, for any 
1f L  the solution x  to the 

problem 
1x f  lies within the space ,L

 and, be-

sides, the derivative of the solution x  is in the space 

.L
 This establishes that for any 

1f L  the solution 

x  of the problem 
1x f  is in the space .LW


 

Thus, we solved the problem when at any 

{ , }f g L    for equation (11) its solutions are 

0{ , } .Lx y WD
     

2.3. Let us use the ability of the hybrid system 

to be reduced to a linear difference equation defined on 

a discrete set of points. 

For equation (9) we use the designations given 

in subsections 2.1 and 2.2. 

Assume that the general solution of the equa-

tion 
11x f  for f L is a member of the space D  

and is represented by the Cauchy formula: 

11 11

0

( ) ( ) (0) ( , ) ( ) .

t

x t X t x C t s f s ds  

Since 11 11

0

( )( ) ( , ) ( )

t

C f t C t s f s ds  and 

11 11( (0))( ) ( ) (0),X x t X t x  we have,  for x D , the 

representation 
11 11(0)x X x C f   . 

The first variable x  can be estimated out of 

the first equation in (8): 

11 12 11 11(0) .x C y X x C f     

By the use of this substitution in the second 

equation of (9) we obtain: 

21 22x y  = 

= 
21 11 12 21 11 21 11(0)C y X x C f    22 ,y g  

21 11 12 22 1 21 11 21 11(0) .C y y g g X x C f       

Put 
22 21 11 12 ,C   then the second equa-

tion in (9) takes the form 
1.y g  

Suppose that the Volterra operator 
0

0: ( ) M M  is Volterra invertible (for the Cauchy 

problem for 
1y g  at any 

1g M  its solutions are 

0xM ). Thus, we solved the problem, in the case that 

at any { , }f g  B Μ  solutions of (9) are 

0{ , } .x y  D M  

Example 2. Let us consider two equations: 

( ) ( ) [ ] ( ),x t ax t by t f t    [0, ),t         (12) (11) 

[ ] [ 1] [ ] [ ],y t dy t cx t g t     [0, ).t   

Using the Cauchy formula for x , the first

equation in (12) can be written as 

11 11

0

( ) ( ) (0) ( , )( ( ) [ ])

t

x t X t x C t s f s by s ds  

or 

( )

0

( ) (0) ( ( ) [ ]) .

t

at a t sx t e x e f s by s ds      

Substituting x  into the second equation in 

(12) we obtain 
[ ][ ] [ 1] ( (0)a ty t dy t c e x     

[ ]

([ ] )

0

( ( ) [ ]) ) [ ],

t

a t se f s by s ds g t   
[ ]

([ ] )

1

0

[ ] [ 1] [ ] [ ]

t

a t sy t dy t bc e y s ds g t     
[ ]

[ ] ([ ] )

0

[ ] (0) ( ) .

t

a t a t sg t ce x c e f s ds       

Calculating the integral 
[ ] [ ]

([ ] ) [ ]

0 0

[ ] [ ]

t t

a t s a t asbc e y s ds bce e y s ds      

1 1[ ] 1 [ ] 1
[ ] [ ]

0 0

[ ] [ ]

i it t
a t as a t as

i ii i

bce y i e ds bce y i e ds

  
 

 

      

[ ] 1
[ ] ( 1)

0

[ ]( ) /
t

a t a i ai

i

bce y i e e a


 



    

[ ] 1
([ ] 1) ([ ] )

0

[ ]( ),
t

a t i a t i

i

bc
y i e e

a


    



   

we obtain the equation 
[ ] 1

([ ] 1) ([ ] )

0

[ ] [ 1] [ ]( )
t

a t i a t i

i

bc
y t dy t y i e e

a


    



      

1[ ],g t  [0, ).t   

Define the operator  K  by the equality 
[ ] 1

([ ] 1) ([ ] )

0

( )[ ] [ ]( ).
t

a t i a t i

i

bc
Ky t y i e e

a


    



   

Assuming 0,a   let us estimate the norm 

0
|| || :K

 
 

[ ] 1
([ ] 1) ([ ] )

0,1,2, 0

|| || sup | [ ]( ) |
t

a t i a t i

k i

bc
Ky y i e e

a


    

 

    

0 0
0,1,2,

| | | |
|| || sup (1 ) || || .ak

k

bc bc
y e y

a a 





    

Next, we estimate the norm 
1|| ( ) || :I S K

 



  

0 0

1 1|| ( ) || || ( ) || || ||I S K I S K
     

 

        

 
1 | |

.
1 | |

bc

d a
 


 

Thus we find that 
1|| ( ) ||I S K

 



  is less 

than 1 if 

| | (1 | |).bc a d   
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So, for any 
1g  the solution y  of the 

equation 
1y g  lies within .

 

Thus, we solved the problem, when for (12) at 

any { , }f g L    its solution are 
0{ , } .Lx y W

    

2.4. Here we use the ability of the original hy-

brid system to be reduced to the auxiliary linear inte-

gral equation on the base of  the W-method. 

Let us  apply Corollary 1 from 2.1. 

Example 3. Consider the two equations: 

( ) ( ) [ ] ( ),x t ax t by t f t   [0, ),t    

      (13) 

[ ] [ 1] [ ] [ ],y t dy t cx t g t    [0, ).t   

Using the Cauchy formula for x , the first 

equation in (13) can be rewritten in  the form 

11 11

0

( ) ( ) (0) ( , )( ( ) [ ]) ,

t

x t X t x C t s f s by s ds    

11 11(0) ( ).x X x C f by    

Let us construct the Cauchy function 
22C  and 

the fundamental solution 
22Y for the equation 

[ ] [ 1] [ ] :y t dy t g t    

[ ]
1 [ ]

0

[ ] ( 1) ( )
t

t t s

s

y t d y g s d 



     

22 22[ ] ( 1) ( )[ ].Y t y C g t    

From this we can the express [ ]y t  from the 

second equation in (13): 
[ ]

1 [ ]

0

[ ] ( 1) ( [ ] [ ]) ,
t

t t s

s

y t d y g s cx t d 



     

22 22( 1) ( ).y Y y C g cx     

Let us consider the model equation in the form 

of a system 

( ) ( ) ( ),x t ax t f t   [0, ),t   

[ ] [ 1] [ ],y t dy t g t    [0, ).t   

It is known that when 0a   and | | 1,d   this 

system has the following property: at  any ,f L  

g   it follows that ,Lx W


 0.y   

We check when this property is fulfilled for 

system (13). For that it is sufficient to verify the asser-

tion of Corollary 1 from subsection 2.2: if  

0|| ( ) || 1L L        

(or 

0 0
0 0

0 ( ) ( )
|| ( ) || 1

L LW W  
  

  ) 

holds true, then the operator  (operator ) has 

a bounded inverse 
1( ) : L L

     

1 0 0

0 0(( ) : ( ) ( ) ).L LW W
 



     

Here we have 

11 12 11

21 22 22

0
,

0

W W C

W W C

   
    
   

 

0

0 [ ]
( ) ( ) .

[ ] 0

x by t
t

y cx t

   
    

   
 

Variant I. Consider the case where the second 

condition takes place. 

By Lemma 2.4.2 from [14] (Lemma 2 from 

[13]) the 
0C  -stability of (13) can be studied in-

stead of the 
0LW

  -stability of this system. Here C

= [0, )C   is the Banach space of bounded functions 

: [0, ) nx    with the norm 
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Thus, we solved the problem, when for equa-
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Thus, we solved the problem when for equa-

tion (13) at any { , }f g L    its solution { , }x y  are 

elements of the space 
0.LW

   

The background of the solutions stability of 

linear difference equations and LFDEA is presented in 

[45], where also a description of application of linear 

HFDSA for modeling investment development of high-

tech industries is given. 

3. Software for modeling and analysis

In this Section we restrict ourselves to some 

very recent results in modeling and analysis as applied 

to  five topical problems:   Internal rating based model-

ing, Analysis of shocks and their trigger mechanisms, 

Developing a typology of financial market participants, 

Analysis of financial market regulation consequences, 

and Simulation of financial markets. 

3.1. Internal rating based modeling 

Building an internal rating based model for a 

company helps tackle a number of practical aspects of 

building IRB models that involve the definition of dis-

cretization parameters and dynamic transformations of 

factors using macroeconomic variables as factors and 

mapping the model to an international scale. 

An important stage in the IRB approach im-

plementation is the development of a qualitative model 

to assess the probability of default of corporate coun-

terparties that allows evaluating their credit quality 

efficiently. Developing such a model is a nontrivial 

task that might involve numerous technical details and 

complexities. The algorithm for creating the probability 

of default (PD) model has the following steps: 

1. Identification of a set of potential factors

of the model such as groups of financial ratios, macro-

indicators; calculation of the selected financial ratios 

using data from financial statements; 

2. Analysis of the financial ratios (tracing of

ROC curves, calculation of Area Under Curve (AUC) 

ratios, selection of measures that have maximum pre-

dictive power, analysis of outliers, and discretization); 

3. Testing of all possible variants of a logistic

regression model that are evaluated only with use of 

financial ratios; selection of the best model variant; 

4. Adding of micro-factors to the model de-

fined during step 3; selection of the best model variant; 

5. Appraisal of the stability of the model rati-

os in different periods. 

In the paper [25], 18 financial ratios are con-

sidered to create the PD model. These ratios can be 

divided into the following groups: 

‒ Debt to equity ratios; 

‒ Profitability ratios; 

‒ Liquidity ratios; 

‒ Turnover ratios; 

‒ Returns-to-scale ratios. 

The sample used for the analysis and PD mod-

el creation contains data from annual statements (bal-

ance sheets, income statements) of more than 8,000 

Russian entities from the non-financial sector for the 

period of seven years. In total, it includes about 50,000 

observations, where default observations account for 

2.3%. The original sample is divided into a training set 

and a validation set using a 70%/30% ratio, where the 

default levels must be equal in each set. 

The authors built a series of models that 

achieve prediction accuracies in the range of 80–90% 

by AUC criterion [26]. The obtained results are suc-

cessfully applied for different customers in the real and 

banking sectors. 

Based on the empiric study findings the au-

thors arrived to the following practical conclusions: 

1. The predictive power of the factors can sig-

nificantly decrease after dynamic transformations (in-

crements, growth rates). 

2. Discretization of factor values allows im-

proving their predictive power and go to a monotonous 

ROC curve. 

3. It makes sense to include macroeconomic

factors in the model when the sample is representative 

in relation to the macroeconomic cycle. 

Modeling was done using the PROGNOZ. 

Credit Risk software solution that provides comprehen-

sive BI support to analyze financial position of coun-

terparties and rerun models using different measures 

and different counterparty groups (Fig. 1). 
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Fig. 1. IRB modeling using the software solution 

3.2. Analysis of shocks and their trigger 

mechanisms 

Gaining insight into a price formation mecha-

nism is one of most relevant problems in the modern 

economic theory. There are many papers on stylized 

facts of price series, but the reason why these facts 

exist is not clear so far. Studying the dynamics of mar-

ket characteristics in proximity to price shocks can 

logically provide valuable insights into the nature of 

this phenomenon. Based on a statistical approach, we 

have tried to answer the question: What happens in 

close proximity (when considering high-frequency 

data) to a leap in prices? An attempt to study shocks 

along with preshock and postshock market behavior is 

not new. The concept of a market shock is relative and 

should be considered in the context of a timeline and 

level of local volatility. In paper [25], three event types 

are considered, each of which is defined by an appro-

priate timeline (hours, minutes, and ticks). Later they 

are denoted as macro-, meso-, and microevents respec-

tively and analyzed using four key market metrics such 

as price level, trade imbalance, trading volume, and 

bid-ask spread. 

In paper [24], three timelines are determined: 

‒ Level of hours (the macrolevel); 

‒ Level of minutes (the mesolevel); 

‒ Level of ticks (the microlevel).  

To identify events at the macro- and mesolev-

els, a series of minute-level prices is generated that is 

calculated as a half-sum of the best bid price and best 

ask price (or mid-point price) at the end of each mi-

nute. At the microlevel, tick-level price changes are 

used. A tick means any change in price caused by the 

execution of orders. 

To identify shocks at the macrolevel, two fil-

ters (absolute and relative filters) are combined and 

price changes are considered as shocks when both fil-

ters detect such changes simultaneously. 

To identify an extreme event at the mesolevel, 

a filter is used, where an absolute value of one-minute 

returns is compared against moving average of one-

minute returns. A shock is defined as a time point when 

the absolute value of one-minute returns is s times 

greater than the moving average of one-minute returns. 

For the tick timeline, we used the Nanex 

methodology, where a downward (upward) price 

movement is defined as a shock, if the price had to tick 

down (up) at least 10 times before ticking up (down) – 

all within 2 seconds and the price change had to exceed 

0.8%. A tick means a price change caused by a 

trade(s). To apply this type of filter, we generated a 

series of tick-level prices based on trade data. 

At the macrolevel, we identified 1,820 events 

for the analysis period of four months. At the mesolev-

el, we identified 13,368 events or 461 per each stock in 

average or 5.5 events per day. Similarly to the mac-

rolevel timeline, the frequency of identified events var-

ies greatly among stocks: from 0.4 to 17 shocks per 

day. We have revealed an inverse relationship between 

the number of identified shocks at the mesolevel and 

the average number of trades/bids [25, Fig. 1]. The 

greater the number of trades/bids per day on average, 

i.e. the higher is a stock liquidity, less shocks it has at 

the mesolevel. At the microlevel, we identified 369 

events, on average 3.3 events per month for each stock. 

The frequency of events varies from 0 to 12.8 events 

per month for each stock. During the study of these 

events, we found that at the microlevel all events are 

caused by a temporary liquidity crisis  a moment in 

trading when one big market order is executed via a 

large number of trades involving small orders of the 

opposite direction leading to a leap in price.  

A key focus of the paper [26] is the study of 

the behavior of HFT participants during market shocks. 

For this purpose, we have identified market movements 

exceeding 8 standard deviations and 50 basis points in 

one-minute intervals. The total number of analyzed 

shocks exceeds 1,000. For the purpose of analysis, 

shocks accompanied by upward price movements and 

downward price movements are reviewed separately. 

Typical shock profiles are provided in Fig. 2.   
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Fig. 2. A typical price shock profile (here and elsewhere an up-shock is illustrated on the top chart, while a down-shock is 

illustrated on the bottom chart) 

For each shock an aggregate trading volume 

profile is constructed and it has been found that during 

a shock the volume traded in the market showed a ten-

fold increase on average. The analysis shows that a 

leap in trade imbalance is observed five minutes, on 

average, before a shock (see Fig.3). In this case, trade 

imbalance is measured based on a market buy orders to 

market sell orders ratio:  

,b

t

s b

V
I

V V



tI  is trade imbalance at time 

point t, bV is aggregate volume of market buy orders, 

sV is aggregate volume of market sell orders.

Fig. 3. Aggregate profile of trade imbalance 

To analyze the behavior of HFT participants at 

shock points, a metric describing HTF’s aggressive 

orders for executed trades is considered. During 

shocks, HFT participants show more aggressive trading 

and initiate trades in the market. 
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Fig. 4. Aggregate profile of aggressiveness of HFT orders 

In the majority of markets, HFTs are present 

both at the best buy price and best ask price. On a side 

towards which a shock moves, it can be observed that 

HFT participants withdraw their orders and enter addi-

tional orders on the opposite side (see Fig. 5). 

Fig. 5. Aggregate profile of HFT share at best bid and ask prices 

Consequently, during shocks HFT participants 

become more aggressive and supply less liquidity on 

the shock side. 

3.3. Developing a typology of financial 

market participants 

One of the most significant financial market 

structure developments in recent years is high frequen-

cy trading (HFT). Experts say that HFT accounts for 

the greater part of financial market transactions (for 

example, according to Tabb Group, HFT accounts for 

more than 77% of transactions in the UK) and is able to 

crucially influence the occurrence of systemic instabili-

ties. In paper [39], the following key attributes of HFT 

algorithms are outlined: 

1) Sophisticated high-speed tools. To speed

up decision-making, HFT traders use expensive sophis-

ticated tools to track and analyze huge data sets and 

leverage revealed regularities to make investment deci-

sions in real time. High complexity algorithms and 

high speed practically exclude a human from decision 

making.  

2) Latency time minimization. There is a di-

rect relationship between the efficiency of trading algo-

rithms and order transfer time from the algorithm to the 

exchange kernel.  

3) Generation of a high amount of messages

per day. HFT is often characterized by high amount of 

messages (order submittals, order updates, order with-

drawals, and trade executions), high turnover rates per 

trading day, high order-to-trade ratios, relatively short 

average lifetime of orders.  

4) Near zero position at the end of trading

day. Horizons over which HFT traders hold their posi-

tions normally vary from milliseconds to hours.  

5) Private firms engaged in proprietary trad-

ing. 

These algorithms can influence fundamental 

processes at the level of the market microstructure. 
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Therefore, identifying of such HFT participants is one 

of critical tasks. Papers [11; 12; 26] propose different 

techniques for identifying HFT market participants 

based on methods for dividing participants into high 

frequency traders (HFT), long-term investors (LLT), 

and small participants (SMT). In paper [26], analysis of 

participants helps identify ten key differentiators ex-

plaining over 70% of variations in market participant 

characteristics. Analysis of these characteristics for one 

of Asian markets allows identifying about 30 most ac-

tive accounts having characteristics intrinsic to HFT. 

This class of accounts is responsible for the generation 

of more than a half of the aggregate order flow, 75% of 

all trades (67% of total turnover), and 80% of all price 

changes.  

The ecology of financial market participants is 

highly dependent on high frequency traders who influ-

ence qualitative and quantitative market performance. 

The paper [22] also shows that the rate of order place-

ment by HFT participants is largely dependent on time 

of order placement; and a feedback loop strengthens 

when orders are placed in day time of trading sessions. 

In paper [26], to measure the impact of HFT 

participants on the market, the below vector auto-

regression (VAR) is used: 

, , , ,

1 1

n n

i t i i i t k k i t k i t

k k

HFT a b MQ c HFT  

 

    

, , , ,

1 1

n n

i t i i i t k k i t k i t

k k

MQ MQ HFT   

 

    

where 
,i tHFT  is aggregate HFT trading volume at time 

point t, 
,i tMQ  are market variables,  is the number of 

lags (n 1,2,...,6).  

The following variables are considered as fi-

nancial market quality variables:  

1. Relative spread;

2. Market depth;

3. Mid-point price volatility;

4. Rogers-Satchell volatility;

5. XLM (Xetra Liquidity Measure).

During analysis, we have calculated VAR(p) 

model for each instrument and each day (over 500 

models). Then, for each case we measured Akaike in-

formative criterion (AIC). We have found that the im-

pact of HFTs activity on market characteristics with 

one-minute lag is insignificant for most cases, except 

for volatility, which shows positive dependence of HFT 

trade volume at the previous minute HFT(t-1). In this 

way, we have found evidence that this leads to an in-

crease in short-term market volatility in the next minute 

in case of rise in HFT trading volume. We have found 

no evidence that the financial market liquidity is signif-

icantly dependent on HFTs activity (more detailed de-

scription of liquidity measures is provided in paper 

[10]). When it comes to XLM metric, for most cases p-

value of lag impact of HFT on this metric is below 5%. 

The coefficient is statistically significant in 17% of 

cases. This drives us to a conclusion that HFT market 

participants do not continuously contribute to the mar-

ket liquidity; in some cases liquidity drops as HFT 

trading volume increases. 

The results of our studies in this area are used 

in the PROGNOZ.Timeline, a software tool to analyze 

financial market microstructure (Fig. 6). 

Fig. 6. PROGNOZ. Timeline interface 

Access to statistics about trading participants 

along with powerful modeling and visualization capa-

bilities enables us to perform a wide range of tasks for 

analysis of financial market microstructure.  

3.4. Analysis of financial market regulation 

consequences 

A tick size and lot size of a financial instru-

ment are key parameters used for regulating financial 

markets. The history of tick size regulation and tick 
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size changes dates back to 1992, when the American 

Stock Exchange (AMEX) reduced tick size from 1/8 to 

1/16th for shares with a price between $1 and $5. Tick 

size reduction consequences are actively discussed in 

the academic circles. However, there is no consensus 

whether tick size reduction has positive impact or not.  

A tick size is an absolute value and is no good 

for comparing various instruments or countries or ana-

lyzing relationships among variables. For such purpos-

es, it is handier to use a relative minimum price incre-

ment (or a relative tick size), which is calculated as 

follows: 

10000
.

tick size
relative tick size

avg price
 

where relative tick size  is relative tick size; 

tick size  is absolute tick size; 

.avg price  is average price for the calculation period. 

The relative tick size is measured in basis 

points. 

The paper [6] analyzes 60 financial instru-

ments with different tick sizes – from very large ones 

of 72 basis points to very small ones of 0.18 basis 

points. As tick size reduces, the microstructure of fi-

nancial instruments changes significantly. It most no-

ticeably manifests in instrument price developments. 

The paper [8] identifies key properties of order flow 

and analyzes their relationships with a relative tick 

size: 

‒ Distribution of order volumes; 

‒ Distribution of order prices; 

‒ Order cancellation rate. 

A key characteristic of market order flow is an 

order size distribution (Fig. 7). 

Fig. 7. Distribution of order sizes for Aeroflot common stock 

When building distributions for various in-

struments included into the analyzed sample, we have 

found that the order size distribution has a power form 

(see Fig. 8). This means that in case of high tick size 

larger orders come to the market. In case of small tick 

size, large orders are broken into smaller ones so that 

the average order size becomes smaller.

Fig.8. Scatterplot of power-series distribution slope coefficient depending on relative tick size 

Prices of incoming market orders depend on 

the current price of a financial instrument. To compare 

order price distributions, we need a characteristic that 

is not dependent on a specific asset price. As such 

characteristic we use a price distance. Let us formulate 

it as follows: 

( ) /bprice distance p - p ticketsize  for buy orders; 

( ) /aprice distance p p ticketsize   for sell orders; 

where p  is price of order a, ,a bp p  are the best bid 

price and best ask price respectively. 

Best price distance in the market is measured 

by the number of ticks. Having constructed a graph of 

distribution for this characteristic in paper [9] we found 

that such distribution is not mixed and is not described 

by any known distribution used in mathematical statis-

tics (see Fig. 9). 
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Fig. 9. Distribution of order prices for Aeroflot common stock 

For this distribution we have calculated a 

share of incoming orders at the best price deep into the 

order book and on the opposite side of the order book 

(in this way, we divided the distribution into three 

parts). Having calculated these shares for all instru-

ments in paper [7] we found power-law dependences 

(see Fig. 10). 

Fig. 10. Scatterplot of a share of incoming orders depending on a relative tick size 

For incoming orders at the best price in the 

market, a slope coefficient is positive. This proves that 

an increase in tick size leads to an increase in the share 

of incoming orders at the best price in the market. For 

orders on the opposite side of the order book, a slope 

coefficient is negative. In this way, an increase in tick 

size leads to a decrease in the number of trades. 

In paper [7], we have outlined a conditional 

process for order cancellation. In this process, probabil-

ity of cancellation, to a large extent, depends on current 

market conditions with regard to the canceled order. A 

general formula for conditional probability of order 

cancellation is as follows:  
1

2(C , , ,...) A(1 )(1 )(K n b),i iotK y Dn

i i imb tot imbP y n n exp exp
 

    

where (C , , ,...)i i imb totP y n n  is conditional 

probability of order cancellation; 

iy –  is relative position of the order in the 

order book; 

imbn – is coefficient of order book imbalance; 

totn  – is total number of orders in the order 

book; 

A  – is a parameter describing maximum 

probability of order cancellation; 

1K – is sensitivity of probability of

cancellation to relative position of the order in the 

order book; 

D  – is sensitivity of probability of 

cancellation to total number of orders; 

2K – is sensitivity of probability of

cancellation to order book imbalance; 

b  – is adjustment to coefficient of imbalance. 

Tick size impact analysis shows that there is a 

dependence on coefficient 
1K  (see Fig. 11). The coef-

ficient 
1K  characterizes order price sensitivity to the 

current market conditions. Order price sensitivity to the 

current price position in the market decreases as tick 

size goes down. 

Fig. 11. Scatterplot of dependence of coefficient of conditional probability of cancellation on relative tick size
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In paper [7], we have formulated a method 

that enables them to take into account consequences of 

tick size changes in order flow properties. The identi-

fied dependencies can be written as follows: 
0,2619

1

0,238

0,198

0,178

0,178 0,198

0,94

4,512

0,185

0,416

1 0,416 0,185
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

 

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     

where 
1K  – is sensitivity of probability of 

order cancellation to relative position of the order in 

the order book; 

volume – is slope of power law for order size

distribution; 

sameQ – is probability of order booking in the

order book (for buy orders, the price is lower the best 

ask price; for sell orders, the price is higher the best bid 

price); 

oppositeQ – is probability of order booking on

the opposite side of the order book (for buy orders, the 

price is higher the best ask price; for sell orders, the 

price is lower the best bid price); 

bestQ – is probability of order booking at the

best price (for buy orders, the price is equal to the best 

ask price; for sell orders, the price is equal to the best 

bid price); 

TS is relative tick size in the market. 

Laying down the rules regulating a tick size 

remains a live issue today. Stock exchanges and finan-

cial market regulators continue to change the rules for 

defining a tick size. During the study of this topic, we 

have found that the tick size reduction leads to: 

 Decrease in average order size in the mar-

ket; 

 Increase in the number of trades in the

market; 

 Decrease in the number of orders at the

best price in the market; 

 Increase in total probability of order can-

cellation; 

 Higher sensitivity of probability of cancel-

lation to market situation. 

These conclusions are in good agreement with 

the results obtained during the real market regulation. 

The proposed method can be used for predicting the 

impact of tick size changes on the microstructure of 

financial markets.  

3.5. Simulation of financial markets 

Simulation of complex systems has been suc-

cessfully applied across a variety of research and indus-

try sectors. The first agent-based simulation model of 

financial market—the Santa Fe Artificial Stock Market 

(ASM) model—was built by a group of researchers at 

the Santa Fe Institute in the early 90ies. Being mainly 

experimental, the model involved a number of artifi-

cially intelligent agents, or traders, deciding how much 

to invest in a risky asset and how much to invest in-

stead in a risk-free asset. Each trader does this by gen-

erating a demand for a financial asset while the asset 

price moves in response to an imbalance between its 

demand and supply. The ASM model has inspired the 

emergence of various similar models demonstrating 

different assumptions. However, such models are not 

flawless as they rely on a great number of assumptions 

and non-empirical parameters. Backtesting for such a 

class of models is reduced to selecting parameters 

which describe empirical data in the most comprehen-

sive way. 

Due to technological advances, researchers are 

now provided with much more detailed trading data. 

The most complete information can be derived from 

transactional data containing entries of all market or-

ders and trades. Within our problem, we have devel-

oped an approach to build simulation models of a stock 

market microstructure, which–unlike other comparable 

models–can factor in tick size changes made by finan-

cial market regulators as well as limitations or prefer-

ences for a specific class of market participants. Our 

stock market microstructure model is based on the 

Mike-Farmer zero intelligence model designed under 

the guidance of Prof. J. D. Farmer. As demonstrated in 

[8], the Mike-Farmer model has a number of limita-

tions affecting the quality and accuracy of the simula-

tion model; it cannot also factor in external influences 

such as regulator-imposed constraints. Our simulation 

model draws on the Mike-Farmer model while over-

coming its drawbacks. The resulting model includes 

two types of agents such as noise traders and high-

frequency traders (Fig. 12). 

Fig. 12. Simulation model of stock market microstructure
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High-frequency traders fall into four types 

here: directional liquidity providers (intermarket arbi-

trageurs), directional liquidity consumers (smart order 

routing, or SOR), non-directional liquidity providers 

(market makers), and non-directional liquidity con-

sumers (statistical arbitrageurs). Each trader enters and 

withdraws orders in the market. 

Each entered order has a direction, a size, and 

a price. To simulate the order direction, we have used 

the methods developed by Prof. F. Lillo for reproduc-

ing a long-memory order flow. Prof. Lillo suggested 

modeling the order size as a power law distribution that 

allows for simulating large orders coming into the 

market along with significant microstructural changes 

that result from this inflow. To model the order price, 

we considered its distribution from the best market 

prices. [9] is the first research publication to suggest 

splitting this distribution into three parts in order to 

factor in the tick size influence (Fig. 13). 

Fig.13. Distribution of the order price from the best market prices 

The order distribution parameters and the u-

shape pattern of the order flow intensity are estimated 

for each agent. Each trader cancels orders with a speci-

fied probability. Being conditional, this probability 

depends on the current market situation. We have iden-

tified the following most significant parameters that 

can influence the order cancellation process in the fi-

nancial market: 

‒ Position of the order in the order book 

relative to the current market prices, or 
iy ; 

‒ Total number of orders in the order book, 

or 
totn ; 

‒ Imbalance of orders in the order book, or 

imbn ; 

‒ Relative size of orders, or 
relv . 

The results for each aforementioned character-

istic are combined to construct a conditional probabil-

ity function describing the cancellation process (Fig. 

14).

Fig. 14. Conditional probability function describing the cancellation process depending on the distribution of the order 

price from the best market prices (top-left), relative order size (bottom-left), total number of orders (bottom-right), order 

book imbalance (top-right) 

The order cancellation process is not explicitly 

time-dependent however it depends on the state of the 

order book. The order cancellation process parameters 

and b are dependent from the tick size for a particular 

financial instrument. Order cancellation functions have 

also been analyzed for a number of traders identifying 

components that are not significant in the order cancella-

tion process. For example, the order book imbalance is 

not significant for high-frequency traders who are direc-

tional liquidity consumers. To enable the actual imple-

mentation of our simulation model, we have designed a 

dedicated software suite modeling the stock exchange, 

its operations, main elements and their interaction. The 

model kernel runs on  C++. 
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Fig. 15. Simulation modeling system, configuration module of the simulation model 

Our simulation model enables users to make 

scenario changes with regard to preferences and limita-

tions for particular market participants as well as to 

analyze market shifts triggered by tick size changes. 
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«Информационные системы и математические методы в экономике». Обзор охватывает период 2008–2015 гг. В 

основе теоретических результатов лежат основные положения современной теории функционально-

дифференциальных уравнений, разработанной участниками известного Пермского семинара по функциональ-

но-дифференциальным уравнениям под руководством профессора Н.В. Азбелева (1922–2006). В центре внима-

ния находятся задачи прогнозирования, краевые задачи (задачи достижимости), задачи управления и задачи 

устойчивости для динамических моделей, учитывающих эффекты последействия и возможность импульсных 

воздействий (шоков). Для упомянутых задач получены признаки их разрешимости, предлагаются методы по-

строения программных управлений и соответствующих им траекторий, разработаны схемы и алгоритмы иссле-

дования на основе доказательного вычислительного эксперимента, включающие алгоритмы коррекции иссле-

дуемых задач в случае обнаружения их противоречивости. Результаты прикладных разработок используют до-

стижения теории и представляют собой комплекс программных средств для исследования на разрешимость и 

решения реальных задач прогнозирования, достижимости, управления и устойчивости для моделей социально-

экономического развития субъектов Российской Федерации и российской экономики в целом. 

Ключевые слова: модели экономической динамики, задачи прогнозирования, краевые задачи, задачи 

управления, информационно-аналитические системы, системы поддержки принятия решений, прогнозно-

аналитические системы, бизнес-аналитика, финансовое моделирование, финансовые рынки. 

Please cite this article in English as: 

Andrianov D.L., Arbuzov V.O., Ivliev S.V., Maksimov V.P., Simonov P.M.  Economic dynamics models: theory, applica-

tions, computer aided implementation // Vestnik Permskogo universiteta. Seria Ekonomika = Perm University Herald. 

Economy. 2015. № 4(27). P. 33–53. 

mailto:adl@prognoz.ru
mailto:arbuzov@prognoz.ru
mailto:ivliev@gmail.com
mailto:maksimov@econ.psu.ru
mailto:simpm@mail.ru

	
	2. Гресько А.В. Владелец Traveler's coffee и Freelance cafe. URL: http://malina.am/series/efir2603994847 (дата обращения: 26.03.2015).

	
	Blaug M. Ekonomicheskaja mysl’ v retrospektive [Economic conception in retrospective review].Moscow, Delo LTD Publ., 1994. 687 p.
	Keyns Dzh. M. Obshchaya teoriya zanyatosti, protsenta i deneg [The General theory of employment, interest and money]. Moscow, Bukinist Publ., 1978. 494 p.
	Kondratyev N.D. Bolshie tsikly konyunktury i teoriya predvideniya [Long Cycles of Economic Conjuncture and the Theory of Foresight]. Moscow, Ekonomika Publ., 2002. 768 p.
	Lavrov E.I., Kapoguzov E.A. Ekonomicheskij rost: teorii i problemy [Economic growth: theories and issues]. Omsk, OmGU Publ., 2006. 214 p.
	Mal'tus T.R. Opyt zakona o narodonaselenii. Shedevry mirovoj ehkonomicheskoj mysli. T. 4. [An essay on the principle of population. Masterpieces of world economic thought. Vol. 4]. Petrozavodsk, Petrokom Publ., 1993. 140 p.
	Marks K. Kapital. Kritika politicheskoj ehkonomii. Predisl. F. EHngel'sa. Per. I.I. Stepanova-Skvorcova, prover. iisprav. T. 1 [Capital.Critique of political economy.Fr. Engels’ Preface.I.I. Stepanova-Skvortsova’s trans., Vol. 1]. Moscow, Politizdat P...

	
	Competitive Regional Clusters. National Policy Approaches OECD. 30 May 2007. Р.296. URL: http://www.oecd-ilibrary.org/urban-rural-and-regional-development/competitive-regional-clusters_97892
	64031838-en (дата обращения: 01.06.15).
	Competitive Regional Clusters. National Policy Approaches OECD. 30 May 2007. Available at: http://www.oecd-ilibrary.org/urban-rural-and-regional-development/competitive-regional-clusters_978926
	4031838-en (accessed 01.06.15).

	
	Keywords: sustainable development; industry; assessment of sustainable development.




