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Introduction

Here we give a survey of theoretical and ap-
plied results obtained in the framework of the scientific
school at the Department of Information Systems and
Mathematical Methods in Economics, Perm State Uni-
versity, that covers the period from 2008 to 2015. The
earlier works are presented in the paper [2; 3] devoted
to the 50th anniversary of Faculty of Economics, Perm
State University, and in the monographs [1; 46]. The
theoretical results are based on the principal statements
of the contemporary theory of functional differential
equations worked out by the participants of the Perm
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Seminar under the leadership of Prof. N.V. Azbelev
(1922-2006). The focus of attention is on problems of
forecasting, boundary value problems (problems of
attainability), control problems, and problems of stabil-
ity for the dynamic models that allow to take into ac-
count aftereffects and effects of impulse disturbances
(shocks). For the mentioned problems, sufficient condi-
tions of the solvability are obtained, methods of con-
structing program controls and the corresponding tra-
jectories are proposed. Algorithms of the computer-
assisted study of the control problems are worked out,
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including algorithms of correction for certain ill-posed
problems.

The applied results use the achievements of
the theory and are implemented in the form of software
tools for the study and solution of the real economy
problems such as forecasting, control and stability
analysis as applied to models of socio-economic devel-
opment of the regions of the Russian Federation and
the Russian Economy as a whole.

The works are supported by the Russian
Foundation for Basic Research (Project No0.10-01-
96954 “Mathematical and Computer Modelling of the
Ecology-Economic Region State: Problems of Identifi-
cation, Forecasting, Attainability, and Control”), Min-
istry of Education and Science of the Russian Federa-
tion (Contract No. 02.G25.31.0039 “Elaboration of
HighTech Information Analytical Platform for Solving
the Problems of Strategy Planning and Forecasting in
State Control, Social Area, Science, and Industry”,
Resolution of the Russian Federation Government No.
218 of 09.04.2010), and the PROGNOZ Company,
Perm.

1. Control problems

Dynamic models under consideration cover a
wide class of models arising under studying real-world
economic and ecology-economic processes with taking
into account impulse actions (considered as elements of
control), impulse external disturbances, and aftereffect
(time delay). Impulse actions result in jump-like
changes in the system state and lead to introducing
discontinuous solutions of differential equations with
ordinary derivative.

These equations are considered in the space
DS(m) that is a finite dimensional extension of the

traditional space of absolutely continuous functions
(see below). Such an approach to the systems with
jumps was proposed in [5]. It doesn’t use the compli-
cated theory of generalized functions (i.e. distributions)
and finds many applications. Conditions of the solva-
bility to the control problems for linear functional dif-
ferential systems with trajectories from DS(m) as well

as constructive methods and algorithms of construct-
ing program controls are presented in [31; 32; 36; 37].
Therewith possible jumps of trajectories are considered
as components of control actions in combination with
the traditional control from the space L,, and the aim

of control is defined as the attainment of a prescribed
value by each of the given linear functionals whose
number in total is not equal to the dimension of the
system. The latter circumstance and the general form of
the on-target functionals are used in [30] to hold a tra-
jectory in a neighborhood of a given normative trajec-
tory during a given period of time. Some possible ef-
fects arising due to the use of impulse controls jointly
with controls from L, are discussed in [31], where it is

shown, in particular, that the use of impulse control
can reduce the total cost of the given goals attainment.
Here we follow the notation and the princi-
pal statements of the theory of functional differential
equations in its part concerned with linear impulsive
systems [15, p. 123-130] (see also [16, p. 124-134];
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[17, p. 100-108]). Denote by L =L [0,T] the space of
Lebesgue summable functions z:[0,T]— R" with the

.
norm ||z||L":f|z(s) |, ds, where || stands for a
0

normin R" (in the sequel we shall omit the index n if
the dimension of the space is obvious). To describe the
trajectories with jumps of the first kind at the points
t <t,<..<t <T (t>0), we follow [5] and intro-

duce the space DS(m) of piece-wise absolutely con-
tinuous functions x:[0,T]— R" of the form

KO = [2)ds+ X0+ D, 4 OAXE), O

where zel,, AX(t ) =x(t)—x(t —0)  and
X () is the characteristic function of the seg-
ment[t ,T]. The norm in DS(m) is defined by the
equality
X1l o =X A+ TXO) A DT AX(E) |, -
k=1

Next we denote by AC [0,7] the space of absolutely
continuous x:[0,T]—R" with  the  norm
IxIl. = xIl, + [x(©)],. Thus DS(m)is a finite-

dimensional extension of AC [0,T].
To describe the system under control, we in-
troduce the linear operator L :

(LX)() = X(t) —j K (t, $)%(s)ds + A(t, 0)X(0) . @)

DS (m)

Here the elements Kk, (t,s)of the kernel
K(t,s)are measurable on the set
{(t,s):0<s<t<T}and such that the estimates

[k, (t,s) [< k), 1,j=1..,n,

hold on this set with a « summable on [0,T], and the
elements of (nxn)-matrix A(t) are summable on
[0,T] too. The operator £: DS(m)— L is bounded.
Functional differential system Ly= f

covers differential equations with concentrated and/or
distributed time delay and Volterra integro-differential
systems.

The space of all solutions to the homogeneous
system  (£x)(t)=0, t[0,T], is of dimension
n+mn.Let {x,...,X,...y be a basis in this space. The
matrix X ={X,...,X,,m} IS called the fundamental

matrix (we assume, for definiteness, that rX =E). The
so-called  principal boundary value problem
Lx=f,rx=0c is uniquely solvable for any

fel,oeR™™, and its solution has the representa-
tion

Xt) = X(O)o + [ C(t,5)f(s)ds, 3)
where C(t,s) is the Cauchy matrix.

Let ¢:DS(m)—R" be the linear bounded
functional. There takes place the representation
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x= [ D(S)x($)ds + ¥ox(0) + D W, AX(E,),

where elements of measurable ( Nxn)-matrix are
bounded in essence, and W¥,, k =0,...,m,are (Nxn)-
matrices with real-valued elements.
Consider the control problem

Lx=Fu+f, x(0)=¢a, x=p. 4
Here F:L, — L is alinear bounded operator, L, is the
space of square summable functions u:[0,T]—> R’
with the inner product (u,v) = J'OT u’ (t)v(t)dt (-7 stands
for transposition). The goal of control in (4) is given
with the use of a vector-functional ¢:DS(m) — R" : it
have to take the vector value £ on a trajectory of the

system £x=Fu+ f underacontrol u.

In this survey, we restrict ourselves to one
completely formulated main theorem that gives a nec-
essary and sufficient condition of the solvability to
problem (4). As for the rest, we refer the reader to the
corresponding papers and give only brief comments.

To formulate the theorem, we introduce the
following designations:

() =0(5) + || ®(r) C!(z,9)dr,

T .
2= [, @)X (s)ds = (] Z,),
where = is the (N xn) -matrix whose columns are
first ncolumns of N x(n+mn)-matrix Z ;

M = [ [F'@ls)IF el (s)ds,

here F*:L" — L, is the adjoint operator to F .

Theorem 1 ([32]). The problem (4) is solvable
if and only if the linear algebraic system

E+W,. . .Y )] A+M-pu=
= - O()f(5)ds— (&, +¥,)-a

is solvable with respect to (nm+ N)-vector
col (4, ). Every solution col(4,, £,),

Ao=col(1y,..., A7), of the system (5) deter-
mines the control that solves the problem (4) :

©)

AX(t) = A5 k=1...m, u)=[FOI' ) u,

Let us give some explanations how one could
use this theorem to hold a system in a given neighbor-
hood of the normative trajectory. Without loss of gen-
erality we consider the case of the zero normative posi-
tion. Thus it is sufficient to hold a system in a neigh-
borhood of the origin. Let us fix a T, € (0,T) and first

solve the control problem
Lx=Fu+f,te[0,T], x(0)=¢, x(T,)=0. (6)
At the point t=T,, the system takes the right
position. If take off the control at this moment, that is
put u(t)=0,te[T,T], then, even for the case of
f (t) =0, the system with aftereffect will lost the zero

position as it has in general a nonzero prehistory which
plays the role of disturbance. In order to hold the sys-
tem in a neighborhood of zero, we use the following

35

additional conditions. Let us add to the conditions of
(6) the equalities

j;vj (5) x(s)ds =0, j=1,2,...,v. @)

Here V; =diag(v;,...V;); Vy,--V,,-..is @ line-
arly independent system of elements from L,[T, ,T]

such that their linear span is everywhere dense in this
space. Under some natural assumptions, for any given
radius of the ball in L,[T, ,T], centered by the origin,

there exists a v such that conditions (7) provide us
with the property that the corresponding trajectory x
belongs on the segment [T, ,T] to the above mentioned

neighborhood.

In [31] the case is considered when the matrix
M in (5) is nonsingular. In this case, problem (5) is
solvable in the class of controls ueL, for any collec-

tion of impulse actions, and impulses can be used to
minimize the total cost of control. Let us note that in
economic dynamic problems, impulse control is based
on the possibility of change of the system state instant-
ly at certain time moments due to the corresponding
investments as an addition to a regular financing. As it
takes place, estimating the total cost, we can take into
account concrete parameters of financial program, say,
parameters and conditions of credits. As is shown in
[30], by virtue of instant financial actions one can re-
duce the total cost of the given goals attainment.

In [38], a closely related question is discussed,
namely, the question of the dependence the total cost
of control on a time delay of the control implementa-
tion. An approach to the problem of optimal delay is
proposed.

In [4; 40; 42; 43], for systems with discrete
time, the problem of correction of inconsistent control
problems is considered. Two kinds of correction are
under study, namely, the structural one and the re-
source correction. The algorithms of the correction are
based on the results of I.I. Eremin and his collaborators
[23]. It should be noted that the situation of incon-
sistency (ill-posedness) is met with quite often in prac-
tice of the study of real-world economic problems [4] .

Dynamic models considered in [21; 34; 35]
are concrete realizations of the so-called abstract
functional differential equation (AFDE). Theory of
AFDE is thoroughly treated in [16; 17]. On the other
hand, the systems under consideration are very typical
ones met with in mathematical modeling economic
dynamic processes and covers many kinds of dynamic
models with aftereffect (integro-differential, delayed
differential, differential difference, difference) and with
impulsive perturbations resulting in system's state
jumps at prescribed time moments. The equations of
the system contain simultaneously terms depending on
continuous  time, te[0,T] and  discrete,
te{0,t,...t,,T}, this is why the term "hybrid" seems
to be suitable. As this term is deeply embedded in the
literature in different senses, we follow the authors
used the more definite name “continuous-discrete
systems" (CDS). For the considered CDS’s, in [21; 36;
37] the question on the solution representation is
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solved, the conditions of the solvability of boundary
value problems and control problems are obtained in
the form which is used under computer-assisted
studying these problems. In [36; 37] the main result is a
detailed description of all controls that solve the con-
trol problem by the controls generated by the discrete
subsystem. The questions of optimal correction applied
to inconsistent hybrid control problems are studied in
[40; 41].

In [33] the system under consideration is sub-
ject to impulse disturbances which result in trajectory
jumps. It is assumed that neither initial moments nor
values of jumps are known in advance. A construction
of regular (not impulse) control is proposed, which
solves the control problem with a given set of objective
functionals, despite of the action of impulses. It as-
sumed also that the information about performed jumps
is available to the beginning of the action of correcting
controls, which are positional with respect to jumps of
the realized trajectory. For the successive compensa-
tion of occurring jumps, a feedback (additional sum-
mands in motion equations) is introduced. An example
given in this paper demonstrates that in the case of ig-
noring the proposed procedure the solution of the con-
trol problem is more expensive (needs a greater re-
source).

In [35] the boundary value problems

Lx=f, x=24
for functional differential systems are considered when
the number of boundary conditions is greater than the
dimension of the system in the case of approximate
fulfilment of boundary conditions:

Lx=f, |x-p<e. (8)

The boundary value problems (8) are
connected with studying the problems on the
attainability for given indexes of development to the
economic system under consideration. The approach is
based on theorems whose conditions allow one to
check up them by special reliable computing
procedures. Dynamic models under consideration
cover many kinds of dynamic models with aftereffect
(integro-differential, delayed differential, differential
difference).

2. Problems of Stability

The recent general theory of functional differ-
ential equations [15; 16; 17] allowed us to give a clear
and concise description of their basic properties includ-
ing the properties of solution stability. At the same
time broad classes of linear hybrid functional differen-
tial systems with after-effect (LHFDSA) arising in
many applications are not formally covered by the de-
veloped theory and remain out of view of specialists
using functional differential and difference systems
with after-effect for simulation of real processes. Be-
low we suggest hybrid functional differential analogues
of fundamental assertions of the theory of functional
differential equations for problems of stability.

2.1. First, let us consider the case when one of
the equations is a linear differential one and is defined
on a set of discrete points, and the other one is a linear
functional differential equation with aftereffect
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(LFDEA) on a semiaxis. For this case we describe the
W-method scheme of N.V. Azbelev
Let us denote the infinite matrix with the col-
umns  y(=1),y(),y@®),..., y(N),... of size n, by
y ={y(-1), y(0), y@),..., y(N),..} and the infinite
matrix with columns g(0),9(),...,g(N),... the of size
Each infinite matrix

y :{y(_1)7 Y(O): y(1)1 ey y(N)v . }
can be associated with the vector function

Y() = Y(=1) 1.0 (1) + Y(0) 230, (1) +
+YD K2 O+ + YIN) 2y O -
Similarly, each of the infinite matrices
g ={9(0),9(),...,g(N),.. } can be associated with the

vector function
9(t) = 9(0) x101) (1) + 9 (D) 21 (V) +-..
e IIN) Zny O+

Let us denote the vector function
y(t) = y([t]), te[-1,»), by y(t) = y[t] and the vector
function g(t) = g([t]), t<[0,), by gft].

The set of vector functions y[-] is denoted by
(,. The set of vector functions g[]is denoted by .
Let (Ay)(t)=y(t)—y({t—-1) =y[t]-y[t-1] at t>1, and
(Ay)(t) = y(t) = y[t]=y(0) at t[0,2).

The abstract hybrid functional differential sys-
tem takes the form

£11X+ley: X—Fx-F,y= f,

['21X+['zzy =Ay - lex_ Fzzy =0

Here and below R" is the space of vectors
a =col{a’,...,a"} with real components and the norm
[l . Introduce the space L of locally summable

f :[0,00) — R"

9)

with semi-norms

.
| f ||L[o,n=_[|| f(t)]l,.dt forall the T >0 and the space
0

D of locally absolutely continuous functions

X :[0,00) — R" with seminorms
[l x "D[O,T]:” X "L[O,T] +11x(0) ”L«"
forallthe T >0.
Also introduce the space ¢ of vector functions

glt)= g(o)}([o,l) ®+9 (1)/1’[1,2) ®+...
A IIN) iy O+

;
with the semi-norms ||g||,T:Z||gi . for all the
i=0

T >0 and the space ¢, of vector functions
Y() = Y(=1) 1.0 (1) + Y(0) 230, (1) +
YD 22 )+ + YIN) i iy O+

;
with the semi-norms ||y||(m=2|| Yi |l for all the
i=—1

T>-1.
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The operators L, R :D->L,
L, F,:ly—>L, L,k :Dol, L,F,:(,>!
are assumed to be continuous linear and Volterra.
Let E:[ﬁ“ LH]. Then (9) can be written
1 2
as L{x,y}=colf,g}.
Suppose that for any x(0)eR" and

y(=1) e R" the Cauchy problem for the «model» sys-
tem Xx=Fx+Fz+z, Ay=Fgz+FJy+u, where
the operators F):D—L, F:(, —>L, F):(, —>L,
Fy:D—(, Fj:(,—( are assumed to be continu-

ous linear and Volterra. Then the model system can be
written as £,{X, y} = col{z,u}. Suppose its solution can

UJZJ( X(O) j [W]] szj{zj
~22 y( l) W21 WZZ -

)

Here W:Lx(— Dx/{,is the continuous Volterra

operator, Cauchy operator for the system,
W:[W” W“J, U:R"xR" — Dx/, is the funda-
WZl W22
mental matrix for the system,
U — (Ull U12 j
U21 UZZ

If the elements coKX, y}:[0,o0)x[-1,0) —>
— R"xR" forming the Banach space DxM, =
BxR")x(MxR") (space Dc D, space
M, =M®R" = (,, space BclL, space Mc/,
B, M are the Banach spaces) have certain specific
properties, such as
sup [ x(t) |l .. + s Iy(K) [I,.0 <0,

t=0
and the Cauchy problem is uniquely solvable for the
equation £{x, y}=colf,g} with the bounded linear
operator £:DxM, —>BxM, then the solutions of
this problem have the same asymptotic properties. This
follows from the theorem given below [44].

Theorem 1. Assume W:BxM —
— Dx M, is the bounded Cauchy operator of the Cau-
chy problem for the model equation
LA, y}=col{f,g}, coKx(0),y(-1)}=coK0,0} and
U is the fundamental matrix of the model equation
L{x, y}=coi{0,0}. Here L :DxM,—>BxM. As-
sume the linear operator £:DxM, —BxM is bound-
ed, C is the Cauchy operator of the Cauchy problem
L{x,y} = cof,g}, coKx(0),y(-1)} = coK0,0}
and X is the fundamental matrix of the equation
L{x, y}=coK0,0}. Then for the equality
WAB,M}+U{R",R"}=C{B,M}+ X{R",R"} (10) to
hold true it is necessary and sufficient that the operator
LW (the operator WL ) has a bounded inverse

(W) :BxM —>BxM
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(ve)™:(DxM,)’ > (DxM, '),

where (Dx MO)0 ={coKx,y}eDxM, :
co{x(0), y(~1)} = co0, 0} }.

Corollary 1 [44]. If the operator
L:DxM; »>BxM is bounded and
” (E_'CU)W”BXM—»BxM<1 is true or

I W(L_Eo)”(DxMu)u(DxMO)‘l is true, then equality

(10) holds true as well.

In the case when (10) holds true (when the so-
lution spaces of the model equation and equation under
study coincide), we say that the equation
L{x,y}=col{f,g} has the property DxM,, or, in
short, the equation is Dx M, -stable.

The concept of Dx M, -stability relates to the

monograph by J.L. Massera and J.J. Shaeffer on the
admissibility of pairs of spaces [39] and with the mon-
ograph by E.A. Barbashin on the solution property
preservation at the accumulation of perturbations [20].

Assume that the model equation [13-19; 28]
and Banach space B with the elements of the space L
(B c L, this embedding is continuous) are selected so
that the solutions of this equation possess asymptotic
properties we are interested in.

Suppose, for example, sup[|x(t) ||, <.

=0

def
Then, putting £,x=X+x=z , we introduce the Ba-

nach space L, of measurable and essentially bounded

z:[0,00) > R" with  the

vraisup|[z(t) || ,<o as the Banach space B. The
=20

functions norm

space D(L£,,L,) generated by the model equation con-
sists of solutions of the form

X(t) = (W,2) (@) + (Upa)(t) = j'e’“’s’z(s)ds +ae™

(aeR", zeL,).
These solutions are bounded
(sup || x(t) ] ,<o0) and their derivative X =—x+z isin
t>0

L., . All the solutions of this equation form the Banach
space with the norm
I X“D(LM,L,,) =
= vraisup || x(t) + x(O) [, +[1x(Q) |, <,

which is linearly isomorphic to the Sobolev space
W®[0,0) with the norm

Here in after this space is referred to as W_ .
Here W,_ < D, this embedding is continuous.

Similarly, for the Banach space B — L we in-
troduce the Banach space D(£,,B) with the norm

XNz = 1%+ X1l + 11X I -

Here the embedding B — L is assumed to be

continuous. Assume that the operator W, acts contin-
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uously from the space B into the space B, and the
operator U4, acts from space R" into the spaceB .
This condition is equivalent to the fact [13-16] that the
space D(L,,B)is linearly isomorphic to the Sobolev

space with the norm
I| x |kNE§“[0,oo):” X ”B +|Ix “B :

Hereinafter this space is referred to as W,
(W; < D, this embedding is continuous).

The equation £,x=zwith the operator
L, W, ->B is D(4,,B)-stable if and only if it is
strongly B -stable. £,x=z is strongly B - stable if
for any z € B each solution x of this equation has the
property xeB and xeB [14, Ch. 1V, § 4.6; 4].

2.2. Let us consider the scheme from subsec-
tion 2.1 for two equations (9). The operators
L,:D—>L, L,:0,—>L, L,:D>!l L, ly—>(
are considered as reduction to pairs (Wg,B), (M,,B),
Wy, M), (M,,M). These operators are assumed to be

Volterra linear and bounded operators.
Assume that the general solution of the equa-
tion £,y=g for geMis the space of M, and is

represented by the Cauchy formula:
Y =YY+ 3-Cft slals
Let
(CL01= 2.Cllals]
(VY D) =Y, 1Y),

Then every solution y of the second equation

in (9) has the form:
Y =-CpLX+Y,Yy(-1)+Cy0.

Substituting the first equation into (9) we ob-
tain
Lyx+ L,y = L,X=L,Cp Ly X+ LYy, Y (D) + £,Cp00 = f,

Lx=L,Cplx =1, =T =L,Y,y(-D) - L£,C0.

Let £L=L,-L4,C,,L,, then the first equation
in (9) takes the form of £Lx = f,.

Suppose the Volterra operator £:(Wg)° — B
is Volterra invertible ( the Cauchy problem for £x = f;
possess the following property: at any f, € B its solu-
tions are x eWy ). Thus, we solved the problem, when
for equation (9) at any {f,g}<BxM its solutions are
{x, y}eW; xM.

Example 1. Consider the following two equa-
tions:

X(t) +ax(t) +by[t] = f (1), t €[0,0), (11)
y[t]—-dy[t —1]+cx[t] = g[t], t<[0,0),
putting
y(0) —dy(=1) +¢(0) = y[t] - dy[t —1] +cx[t] =
=9[t]=9(0), t<[0,1).
Let us introduce the following spaces:
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lo={yele:lyl,, = Sup [y(k) Il < +oo},
(={getilgl, = sup 19k <o}

If we introduce the operator
(Sy)t)=dy(t-1), t=>1, (Sy)(t)=0,te[0,1), then
the second equation takes the form

y(® - (Sy)(®) +ex(t) =
= g,() =g +dy(t-1), t[0,1),
y(®-Sy)®)+ex() = g(t), te[l,).

Let us consider the operator S: ¢ — (. We
know that the operator (1—-S):¢, —¢_ is Volterra
invertible if and only if the spectral radius p, (S) is
less than one. For S the condition p, (S)<1 is
equivalent to the inequality |d |<1 [47, p. 87, p. 140].

Let us put

(L X)(t) = x(t) +ax(t), t =0,
(LoY)t]=bylt], t=0,
(L, X)(t) =cx[t], t=0,
(L))[t] = yIt] - (S¥)It], t=0.

Now we build the Cauchy function C,, and

the fundamental solution Y,, for the equation

y[t]—dy[t-1] = g[t]:
[t]
yitl=d"ty(-1) + > g(s)d =

s=0

=Y, [t]y(=1) +(C,9)[t].
Out of this we can express y[t] of the second
equation of (11):

[t]
y[t] =d"'y (=D + Z (gls]—cx[s]d™™ =

=Y, [tly(-1) +(Cy, (g —cX)t]
Substituting the obtained y into the first formula of (9)
(or (11)) we get
(LX)(0) + (L y)[t] = X(0) +ax(t) +

+bd "y (1) + bi(g[s] —cx[s]d = £ (1).
Further we have N
(LX)(t) = (L — L,C L) X)(t) = X(t) +ax(t) -
—bc% X[sJd™ = f,(t) = f(t)—bd""y(-1) -

s=0

1
-b> g[sd™.
s=0

Itis evidentthat f, el if |d|<1.
Let us write the Cauchy formula for

(L, x)(t) = bci X[s]d™ + ()

X(t) = X, (t)x(0) + j.Cll (t, s)(bci X[+

+1,(3))ds.
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We have X, (t)=e™, C,(t,s)=e2". For
a positive a >0, we can estimate:

t [s] .
sup | j Cy(t,5)bc > x[ildds |<
t>0 0 i=0

L] _
< sup[| be | e’atjeaSZ| d[*ds: || x| J <
t>0 0 i=0 :

t
<|bc|- -supe ™ j e*ds- || x||_ <
>

1—Idl

IbCI Al -

1- | d|

Hence, the norm of operator bC,,cC,, is less
than 1 if

|bc|<a@—|d}).

Thus, for any f, €L, the solution x to the
problem Lx = f, lies within the space L, and, be-
sides, the derivative of the solution X is in the space
L,. This establishes that for any f, €L the solution
x of the problem Lx = f; is in the space W,_.

Thus, we solved the problem when at any
{f,g}elL, xt  for equation (11) its solutions are
{x,y}eD=W_ x/(_,

2.3. Let us use the ability of the hybrid system
to be reduced to a linear difference equation defined on
a discrete set of points.

For equation (9) we use the designations given
in subsections 2.1 and 2.2.

Assume that the general solution of the equa-
tion £,x="f for f eLisa member of the space D

and is represented by the Cauchy formula:

x(t) = X, (£)x(0) + .t[Cu(t, s) f (s)ds.

Since and

(€, F)(1) = jcn(ty s)f(s)ds

(XuX(O)(1) = X5 ()X(0), we have,
representation x = X, x(0)+C, f .
The first variable x can be estimated out of
the first equation in (8):
X= _C11L12 y+ XHX(O) +Cy f.
By the use of this substitution in the second
equation of (9) we obtain:

Lyx+Lyy =
= _[Qlcll[lzy"'[zlxnx(o) +[21C11f + [22)/ =0,
_[21C11[12y +[22y =0,=90 —[QanX(O) _[21C11 f.
Put £L=L,,-L,,C,L,, then the second equa-
tion in (9) takes the form Ly =g,.
Suppose  that the Volterra  operator
L:(M,)° — M s Volterra invertible (for the Cauchy

problem for Ly =g, at any g, € M its solutions are
X € M, ). Thus, we solved the problem, in the case that
at any {f,g}eBxM solutions of (9) are
{X, y} e DxM,.

for xeD, the
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Example 2. Let us consider two equations:
x(t) +ax(t) + by[t] = f (1), t<][0,0), (12)

y[t]-dy[t =1 +cx[t] = g[t], t ]0,0).
Using the Cauchy formula for X, the first
equation in (12) can be written as

X(t) = X, (t)x(0) + jcll (t,s)(f (s)—by[s])ds
or O
x(t) = e *x(0) + _fe’a“’s) (f(s)—by[s])ds.

Substituting x into the second equation in
(12) we obtain
ylt]—dy[t 1] +c(e ™x(0) +
[t
+[ 9 (F (s) - by[s])ds) = gt],
0

yl[t]—dy[t -1]- bCT e 1y[s]ds = g,[t] =
0
= g[t]-ceMx(0) - c[j'] e 29 f (s)ds.
Calculating the integr;I
bc[j[] e 29 yIs]ds = bce’*‘[‘][j[]e""S y[s]ds =

i+l i+l
= hee Y Z y[|]j e*ds = bce " Z y[l]J e*ds =

=hee ™" Z y[i]e*"* —e¥)/a=

¢l

OGS

we obtain the equatlon
be QA o ey -aq-)
y[t]—dy[t —1]—; > ylile -e )=
i=0

=gy[t], te[0,00).
Define the operator K by the equality

[t]-1 '
(Ky)[t] = bf Z V[i](e 20 _e

Assuming a>0,

—a([t]—i))

—a([tl—i))l

let us estimate the norm

K1,
b Uss a i —a([t]-i
IKyll, = SUIO |;Zy[|](e ) _gmaiy <
bc al bc
Ayl I sup @-e )y, 2L
Next, we estlmate the norm
1 -8)"Kl, , :
N =-S)*Kil, o, A=8)"*M, ., IKIl, ., <
__ 1 lbe|
—|d| a
Thus we find that ||(I-S)"K||, _,, is less
than 1 if
|bc|<a@—|d]).
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So, for any g, €/, the solution y of the
equation £y =g, lies within ¢_.

Thus, we solved the problem, when for (12) at
any {f,g}elL, x(, itssolutionare {X,y}eW_ x(_,.

2.4. Here we use the ability of the original hy-
brid system to be reduced to the auxiliary linear inte-
gral equation on the base of the W-method.

Let us apply Corollary 1 from 2.1.

Example 3. Consider the two equations:

X(t) +ax(t) + by[t] = f (1), t €[0,0),
(13)
y[t]-dy[t =1+ cx[t] = g[t], t €[0,).

Using the Cauchy formula for x, the first
equation in (13) can be rewritten in the form

K©) = X (OX(O)+ [t 9)(F(5) ~bylsDds,

x =X, Xx(0)+Cy, (f —by).
Let us construct the Cauchy function C,, and
the fundamental solution Y,, for the equation

ylt]-dy[t -1 = g[t]:
[t]
y[t]=d"y(-1) + Z g(s)d" =

=Y, [tly(=D) + (C,,9)[t].
From this we can the express y[t] from the
second equation in (13):

[t]
It =d"y(=2)+ 2, (gls] - X[t d ",

Y =Y, Y(=1)+C,, (g —cx).
Let us consider the model equation in the form
of a system
X(t) +ax(t) = f(t), te][0,00),
ylt]-dy[t-1] = g[t], te[0,00).
It is known that when a>0 and |d|<1, this
system has the following property: at any felL,,
gel, itfollowsthat xeW,_, yel,,.

We check when this property is fulfilled for
system (13). For that it is sufficient to verify the asser-
tion of Corollary 1 from subsection 2.2: if

I (L=LIVIL e, s, <1
(or
|| W(‘c _EU) ||0NLXX/>c0)O‘>(WL,JXf>cO)O < 1)
holds true, then the operator £V (operator WL ) has
a bounded inverse
(WL, xl, L, x(,
(OVL) ™t W, xL0)" = WL x£,0)°).
Here we have

W= W11 le _ C11 0

_[Wﬂ sz]_( 0 sz],
X (0 byft]

-l 3 %)
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Variant I. Consider the case where the second
condition takes place.

By Lemma 2.4.2 from [14] (Lemma 2 from
[13]) the Cx( ,-stability of (13) can be studied in-

stead of the W, x(, -stability of this system. Here C
= C[0,) is the Banach space of bounded functions
x:[0,00) — R" with the norm || x [l.=sup || x(t) [|... -

t>0

Multiplying

C, O 0 by[t]) 0 (Cuby)(t)
0 C, (cx[t] 0 j_ (C,,eX)[t] 0 ’

we calculate

(Cuby)(®) =b e 9 ylslds,

(C,,ex)[t] = ci x[t]d .

Now let us estimate the operator norm
I1Cubll,,, 0, :

t
|bIsup | (Cy)(®) [={b [sup| [e=y[s]ds |-
= = 0

[t]+{t}
blsup| [ e y[s]ds|
t>0 0

[t]
=Ib |sup( [ & W3 | y[s]| ds+
©0 g
{t}
+I p-2([t+-9) | y[s]| ds) <
0

[t]

<|bsup [e 9 | y[s]|ds+
t=0 %

{t}
+|b|sup j e 29 | yIs]| ds <
t>0 0

[t]
<Ib|supe ™ [ | y[s]|ds +
t>0 0
{t

+|b]-| y(O)Isupe’a‘jeasds <
0

t>0

[t]-1 ] i+l ea -1
<|bsupe | y[i]| [ e*ds+|b]-| y(0)] <
t>0 i=0 i a
b —a{t}-al & : a(i+ ai e’ -1
S%S}er ORI IV E ")+ b y(0) [ ——<
2 i=0

b (-1 ] )
<Llsupes0-0 (et _gtis. |y, +
a t0 i=0 N

e* -1

+[b]-y(0)]

<

b k-1 ) )
<Plsypero. sup 3 et ).y, +
a 0 k=012,... j=0

e’ -1
+|b]-|y(0)] <

a

b
<[Pl lSUpe‘a{”~ sup (L—e ™)yl +
a t>0 k=0,1,2,...
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e-1 |b a
+|b|-|y(0)|—s'—a'max{1,e Byl
That is, when 0<a<lin?, then
b
Gl <2,

Estimate the operator norm || C,,C||._,, :

SUDICZX[I]dm "<l SUDZId [l x| <

t>0 i=0 t=0

<cl-

-l x ,
TR AL

ICutlees Aol g

Let us consider the cases of the following
norms in the space R* :

1C6 V) L= X[ +1 Y,
I Y) Il = (x* +y*)"2,

I (%, Y) Il..= max{| x|, y [}
Then, for the corresponding norms of the matrix

A:(a11 a”),wehave
aZl aZZ

[l All,=sup{l a; [+]ay, .| ay | +]a, [}

| All,< (8l +af, +a2, +al,)"?

I All.=max{] a, | +|ay || a, | +]ay [}-
Suppose 0<a<In2,then, for above cases, we

obtain
bl el
”W(E EO)”(CX/ 0)° >(Cx/,, 0)0

a 1-|d|
bz CZ 1/2
V(L L) “(cwao)%(mun)"g[ng ZJ l

(1-1d1
[b| _lc|
IWE =) .o e S max{? Cidif
respectively.

So, for 0<a<In2, we obtain the conditions:
2 2
either m+£<1, or b—2+c—2<1, or
a 1-[d| a® (-[dJ)

{I bl _fcl } <1
a '1-|d|
Thus, we solved the problem, when for equa-
tion (13) at any {f,g}el x(_ its solutions are
{X,y}eCxl 4, 0r {X,y}eW_ x(,,.
Variant I1. Consider
N (L=LIWVILwr, 5w, - LEL US
” (£_£O)W||L,xxfw~>me(‘% <1
Let us put: (ly)(t) = y[t] and (Ix)(t) = X[t].
Multiply

0 bl [C j[ j() [b(szy)[t]j
C|_ 0 0 sz C(Cnx)[t] .

Then calculate

study  when
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[t]
c(Cy))t]=c j e 2(9)x(s)ds,
0

[t]
b(C,,y)[t] =bD  y[tld""™.

s=0
Estimate the operator norm

Suppose a > 0and calculate the integral

eCulle, -, -

[t [y
lc _[ e 209 x(s)ds | ce j e®*x(s)ds |=
0

1 i+l

= celt Z J' e®x(s)ds <

i+1

Je“ds =

Lo [i,i+1]

Slcle’amz (R
i=0

[t]-1

=lc e—a[t] X ea(i+1) _eai /a —
Lo [ii+1]

i=0
|C|[t]l

ZII

Deflne the operator K by the equality
[t]-1
(Kx)[t]=

—a([t]—i—l) _ e—a(['[]—i))
Lo [i,i+1] '

-a([t-i-1) _ q-a(tl-i)
(e e ).

|C|z

Estimate the norm || K{__, :
[t] -1

L [i.i+1]

” Kx ”/w — Sup |_ Z” " Hl] a([t]*i—l) _e—a([t]fi)) |£
|bc| } lc|
Ayl — sup @—e™) = x|, =
k=0,1,2,... a
Then estimate the norm [|bC,, ||, ,, :

[t] ) [t] )
sup |bY ylild"™" [<|b|-sup ZI d* -y, <
= i=0 =0 j

b (0
1

bC, |, ., <Ib
19Cz Il <0l

Let us consider separately three cases of de-
termination of the norm in the space R*: |(,-) |},

Gy 1CAL-
Suppose a >0, then in the case of the first
E W (,—L,x < PR
1 (L= LWL ar, i, 2 1ld]
in the case of the second norm we obtain
1/2
c
| (L= LWL wr, i S[—+—j ,
et at - ld )y
in the case of the third norm we obtain
So we obtain the following three conditions of
lc| Ib] c’ b?
1-{d| a® (1-|d))?
ax m,ﬁ <1
a 1-|d|

norm we obtain
lcl, _Ib]
2 b2
lc| |b]
L=LIWIL i o SMaX{—,——— .
(L= LW ar, i, {a I 1d]
stability: ?+—<1, <1,



D.L. Andrianov, V.O. Arbuzov, S.V. Ivliev, V.P. Maksimov, P.M. Simonov

Thus, we solved the problem when for equa-
tion (13) at any {f,g}e L, x/(_ itssolution {x,y} are
elements of the space W, x (.

The background of the solutions stability of
linear difference equations and LFDEA is presented in
[45], where also a description of application of linear
HFDSA for modeling investment development of high-
tech industries is given.

3. Software for modeling and analysis

In this Section we restrict ourselves to some
very recent results in modeling and analysis as applied
to five topical problems: Internal rating based model-
ing, Analysis of shocks and their trigger mechanisms,
Developing a typology of financial market participants,
Analysis of financial market regulation consequences,
and Simulation of financial markets.

3.1. Internal rating based modeling

Building an internal rating based model for a
company helps tackle a number of practical aspects of
building IRB models that involve the definition of dis-
cretization parameters and dynamic transformations of
factors using macroeconomic variables as factors and
mapping the model to an international scale.

An important stage in the IRB approach im-
plementation is the development of a qualitative model
to assess the probability of default of corporate coun-
terparties that allows evaluating their credit quality
efficiently. Developing such a model is a nontrivial
task that might involve numerous technical details and
complexities. The algorithm for creating the probability
of default (PD) model has the following steps:

1. ldentification of a set of potential factors
of the model such as groups of financial ratios, macro-
indicators; calculation of the selected financial ratios
using data from financial statements;

2. Analysis of the financial ratios (tracing of
ROC curves, calculation of Area Under Curve (AUC)
ratios, selection of measures that have maximum pre-
dictive power, analysis of outliers, and discretization);

3. Testing of all possible variants of a logistic
regression model that are evaluated only with use of
financial ratios; selection of the best model variant;
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4. Adding of micro-factors to the model de-
fined during step 3; selection of the best model variant;

5. Appraisal of the stability of the model rati-
os in different periods.

In the paper [25], 18 financial ratios are con-
sidered to create the PD model. These ratios can be
divided into the following groups:

— Debt to equity ratios;

— Profitability ratios;

— Liquidity ratios;

— Turnover ratios;

— Returns-to-scale ratios.

The sample used for the analysis and PD mod-
el creation contains data from annual statements (bal-
ance sheets, income statements) of more than 8,000
Russian entities from the non-financial sector for the
period of seven years. In total, it includes about 50,000
observations, where default observations account for
2.3%. The original sample is divided into a training set
and a validation set using a 70%/30% ratio, where the
default levels must be equal in each set.

The authors built a series of models that
achieve prediction accuracies in the range of 80-90%
by AUC criterion [26]. The obtained results are suc-
cessfully applied for different customers in the real and
banking sectors.

Based on the empiric study findings the au-
thors arrived to the following practical conclusions:

1. The predictive power of the factors can sig-
nificantly decrease after dynamic transformations (in-
crements, growth rates).

2. Discretization of factor values allows im-
proving their predictive power and go to a monotonous
ROC curve.

3. It makes sense to include macroeconomic
factors in the model when the sample is representative
in relation to the macroeconomic cycle.

Modeling was done using the PROGNOZ.
Credit Risk software solution that provides comprehen-
sive Bl support to analyze financial position of coun-
terparties and rerun models using different measures
and different counterparty groups (Fig. 1).



Economic dynamics models...

Hanogers

JER
FRrBsadtasts

3.2. Analysis of shocks and their trigger
mechanisms

Gaining insight into a price formation mecha-
nism is one of most relevant problems in the modern
economic theory. There are many papers on stylized
facts of price series, but the reason why these facts
exist is not clear so far. Studying the dynamics of mar-
ket characteristics in proximity to price shocks can
logically provide valuable insights into the nature of
this phenomenon. Based on a statistical approach, we
have tried to answer the question: What happens in
close proximity (when considering high-frequency
data) to a leap in prices? An attempt to study shocks
along with preshock and postshock market behavior is
not new. The concept of a market shock is relative and
should be considered in the context of a timeline and
level of local volatility. In paper [25], three event types
are considered, each of which is defined by an appro-
priate timeline (hours, minutes, and ticks). Later they
are denoted as macro-, meso-, and microevents respec-
tively and analyzed using four key market metrics such
as price level, trade imbalance, trading volume, and
bid-ask spread.

In paper [24], three timelines are determined:

— Level of hours (the macrolevel);

— Level of minutes (the mesolevel);

— Level of ticks (the microlevel).

To identify events at the macro- and mesolev-
els, a series of minute-level prices is generated that is
calculated as a half-sum of the best bid price and best
ask price (or mid-point price) at the end of each mi-
nute. At the microlevel, tick-level price changes are
used. A tick means any change in price caused by the
execution of orders.

To identify shocks at the macrolevel, two fil-
ters (absolute and relative filters) are combined and
price changes are considered as shocks when both fil-
ters detect such changes simultaneously.

To identify an extreme event at the mesolevel,
a filter is used, where an absolute value of one-minute
returns is compared against moving average of one-

Fucrorpanmma ANA Nnokazartens “1.1.PeHTabenbHOCTb NpoAak (3a TeK. roa)

7 S A S

Fig. 1. IRB modeling using the software solution
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minute returns. A shock is defined as a time point when
the absolute value of one-minute returns is s times
greater than the moving average of one-minute returns.

For the tick timeline, we used the Nanex
methodology, where a downward (upward) price
movement is defined as a shock, if the price had to tick
down (up) at least 10 times before ticking up (down) —
all within 2 seconds and the price change had to exceed
0.8%. A tick means a price change caused by a
trade(s). To apply this type of filter, we generated a
series of tick-level prices based on trade data.

At the macrolevel, we identified 1,820 events
for the analysis period of four months. At the mesolev-
el, we identified 13,368 events or 461 per each stock in
average or 5.5 events per day. Similarly to the mac-
rolevel timeline, the frequency of identified events var-
ies greatly among stocks: from 0.4 to 17 shocks per
day. We have revealed an inverse relationship between
the number of identified shocks at the mesolevel and
the average number of trades/bids [25, Fig. 1]. The
greater the number of trades/bids per day on average,
i.e. the higher is a stock liquidity, less shocks it has at
the mesolevel. At the microlevel, we identified 369
events, on average 3.3 events per month for each stock.
The frequency of events varies from 0 to 12.8 events
per month for each stock. During the study of these
events, we found that at the microlevel all events are
caused by a temporary liquidity crisis — a moment in
trading when one big market order is executed via a
large number of trades involving small orders of the
opposite direction leading to a leap in price.

A key focus of the paper [26] is the study of
the behavior of HFT participants during market shocks.
For this purpose, we have identified market movements
exceeding 8 standard deviations and 50 basis points in
one-minute intervals. The total number of analyzed
shocks exceeds 1,000. For the purpose of analysis,
shocks accompanied by upward price movements and
downward price movements are reviewed separately.
Typical shock profiles are provided in Fig. 2.



D.L. Andrianov, V.O. Arbuzov, S.V. Ivliev, V.P. Maksimov, P.M. Simonov

1002

1.000

0998

0994

Market price (p=1 at shocktime)
8
&

0.992

0990
60 -50 -40 -0

20

-10 o 10 20 30 a0 50 60

Time before and after the identified shock, minutes

1.008

1.007

-

1.006

1.005

1.004

1 at shock time)

o
s

1.002

1.001

1.000

Market price (p:

0.999

0998
60 50 40 30

20

10 o 10 20 30 40 50 60

Time before and after the identified shock, minutes

Fig. 2. A typical price shock profile (here and elsewhere an up-shock is illustrated on the top chart, while a down-shock is

illustrated on the bottom chart)

For each shock an aggregate trading volume
profile is constructed and it has been found that during
a shock the volume traded in the market showed a ten-
fold increase on average. The analysis shows that a

imbalance is measured based on a market buy orders to
market sell orders ratio:

V . . .
.1 is trade imbalance at time

VIRV

leap in trade imbalance is observed five minutes, on . ]
point t, V, is aggregate volume of market buy orders,

average, before a shock (see Fig.3). In this case, trade

V,is aggregate volume of market sell orders.
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Fig. 3. Aggregate profile of trade imbalance

shocks, HFT participants show more aggressive trading
and initiate trades in the market.

To analyze the behavior of HFT participants at
shock points, a metric describing HTF’s aggressive
orders for executed trades is considered. During
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Fig. 4. Aggregate profile of aggressiveness of HFT orders

In the majority of markets, HFTs are present
both at the best buy price and best ask price. On a side
towards which a shock moves, it can be observed that
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HFT participants withdraw their orders and enter addi-
tional orders on the opposite side (see Fig. 5).
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Fig. 5. Aggregate profile of HFT share at best bid and ask prices

Consequently, during shocks HFT participants
become more aggressive and supply less liquidity on
the shock side.

3.3. Developing a typology of financial
market participants

One of the most significant financial market
structure developments in recent years is high frequen-
cy trading (HFT). Experts say that HFT accounts for
the greater part of financial market transactions (for
example, according to Tabb Group, HFT accounts for
more than 77% of transactions in the UK) and is able to
crucially influence the occurrence of systemic instabili-
ties. In paper [39], the following key attributes of HFT
algorithms are outlined:

1) Sophisticated high-speed tools. To speed
up decision-making, HFT traders use expensive sophis-
ticated tools to track and analyze huge data sets and
leverage revealed regularities to make investment deci-
sions in real time. High complexity algorithms and
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high speed practically exclude a human from decision
making.

2) Latency time minimization. There is a di-
rect relationship between the efficiency of trading algo-
rithms and order transfer time from the algorithm to the
exchange kernel.

3) Generation of a high amount of messages
per day. HFT is often characterized by high amount of
messages (order submittals, order updates, order with-
drawals, and trade executions), high turnover rates per
trading day, high order-to-trade ratios, relatively short
average lifetime of orders.

4) Near zero position at the end of trading
day. Horizons over which HFT traders hold their posi-
tions normally vary from milliseconds to hours.

5) Private firms engaged in proprietary trad-
ing.

These algorithms can influence fundamental
processes at the level of the market microstructure.



D.L. Andrianov, V.O. Arbuzov, S.V. Ivliev, V.P. Maksimov, P.M. Simonov

Therefore, identifying of such HFT participants is one
of critical tasks. Papers [11; 12; 26] propose different
techniques for identifying HFT market participants
based on methods for dividing participants into high
frequency traders (HFT), long-term investors (LLT),
and small participants (SMT). In paper [26], analysis of
participants helps identify ten key differentiators ex-
plaining over 70% of variations in market participant
characteristics. Analysis of these characteristics for one
of Asian markets allows identifying about 30 most ac-
tive accounts having characteristics intrinsic to HFT.
This class of accounts is responsible for the generation
of more than a half of the aggregate order flow, 75% of
all trades (67% of total turnover), and 80% of all price
changes.

The ecology of financial market participants is
highly dependent on high frequency traders who influ-
ence qualitative and quantitative market performance.
The paper [22] also shows that the rate of order place-
ment by HFT participants is largely dependent on time
of order placement; and a feedback loop strengthens
when orders are placed in day time of trading sessions.

In paper [26], to measure the impact of HFT
participants on the market, the below vector auto-
regression (VAR) is used:

HFT, =a +Y bMQ, , + > ¢ HFT,  +5,
k=1 k=1

MQ, = + Y. BMQ  + D nHFT,  +e,

k=1 k=1
where HFT, is aggregate HFT trading volume at time
pointt, MQ,, are market variables, n is the number of

lags(n=1,2,...,6).

Xon Toproe - (main) SIAENG, 03.08.2012

The following variables are considered as fi-
nancial market quality variables:

1. Relative spread,;

2. Market depth;

3. Mid-point price volatility;

4. Rogers-Satchell volatility;

5. XLM (Xetra Liquidity Measure).

During analysis, we have calculated VAR(p)
model for each instrument and each day (over 500
models). Then, for each case we measured Akaike in-
formative criterion (AIC). We have found that the im-
pact of HFTs activity on market characteristics with
one-minute lag is insignificant for most cases, except
for volatility, which shows positive dependence of HFT
trade volume at the previous minute HFT(t-1). In this
way, we have found evidence that this leads to an in-
crease in short-term market volatility in the next minute
in case of rise in HFT trading volume. We have found
no evidence that the financial market liquidity is signif-
icantly dependent on HFTSs activity (more detailed de-
scription of liquidity measures is provided in paper
[10]). When it comes to XLM metric, for most cases p-
value of lag impact of HFT on this metric is below 5%.
The coefficient is statistically significant in 17% of
cases. This drives us to a conclusion that HFT market
participants do not continuously contribute to the mar-
ket liquidity; in some cases liquidity drops as HFT
trading volume increases.

The results of our studies in this area are used
in the PROGNOZ.Timeline, a software tool to analyze
financial market microstructure (Fig. 6).

. e e SRR =G ow
L T L T - . -

T

Uruoueuvue

Fig. 6. PROGNOZ. Timeline interface

Access to statistics about trading participants
along with powerful modeling and visualization capa-
bilities enables us to perform a wide range of tasks for
analysis of financial market microstructure.
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3.4. Analysis of financial market regulation
consequences

A tick size and lot size of a financial instru-
ment are key parameters used for regulating financial
markets. The history of tick size regulation and tick
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size changes dates back to 1992, when the American
Stock Exchange (AMEX) reduced tick size from 1/8 to
1/16th for shares with a price between $1 and $5. Tick
size reduction consequences are actively discussed in
the academic circles. However, there is no consensus
whether tick size reduction has positive impact or not.

A tick size is an absolute value and is no good
for comparing various instruments or countries or ana-
lyzing relationships among variables. For such purpos-
es, it is handier to use a relative minimum price incre-
ment (or a relative tick size), which is calculated as
follows:
tick size
avg.price
where relative tick size is relative tick size;
tick size is absolute tick size;
avg.price is average price for the calculation period.

1
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The relative tick size is measured in basis
points.

The paper [6] analyzes 60 financial instru-
ments with different tick sizes — from very large ones
of 72 basis points to very small ones of 0.18 basis
points. As tick size reduces, the microstructure of fi-
nancial instruments changes significantly. It most no-
ticeably manifests in instrument price developments.
The paper [8] identifies key properties of order flow
and analyzes their relationships with a relative tick
size:

Distribution of order volumes;
Distribution of order prices;
Order cancellation rate.

A key characteristic of market order flow is an

order size distribution (Fig. 7).
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Fig. 7. Distribution of order sizes for Aeroflot common stock

When building distributions for various in-
struments included into the analyzed sample, we have
found that the order size distribution has a power form
(see Fig. 8). This means that in case of high tick size
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Prices of incoming market orders depend on
the current price of a financial instrument. To compare
order price distributions, we need a characteristic that
is not dependent on a specific asset price. As such
characteristic we use a price distance. Let us formulate
it as follows:

price distance = (p- p,)/ ticketsize for buy orders;

price distance = (p, — p) / ticketsize for sell orders;

larger orders come to the market. In case of small tick
size, large orders are broken into smaller ones so that
the average order size becomes  smaller.

y=561.66x"18
R?*=0.8482

KoadduLmeHT onpeAenatowuii yron HaknoHa

Fig.8. Scatterplot of power-series distribution slope coefficient depending on relative tick size
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where p is price of order a, p,, p, are the best bid

price and best ask price respectively.

Best price distance in the market is measured
by the number of ticks. Having constructed a graph of
distribution for this characteristic in paper [9] we found
that such distribution is not mixed and is not described
by any known distribution used in mathematical statis-
tics (see Fig. 9).
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Fig. 9. Distribution of order prices for Aeroflot common stock

For this distribution we have calculated a
share of incoming orders at the best price deep into the

parts). Having calculated these shares for all instru-
ments in paper [7] we found power-law dependences

order book and on the opposite side of the order book (see Fig. 10).
(in this way, we divided the distribution into three
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Fig. 10. Scatterplot of a share of incoming orders depending on a relative tick size

For incoming orders at the best price in the
market, a slope coefficient is positive. This proves that book:
an increase in tick size leads to an increase in the share A — is a parameter describing maximum
of incoming orders at the best price in the market. For probability of order cancellation:
orders on the opposite side of the order book, a slope K, — is sensitivity of probability of
coefficient is negative. In this way, an increase in tick !

n, — is total number of orders in the order

size leads to a decrease in the number of trades.

In paper [7], we have outlined a conditional
process for order cancellation. In this process, probabil-
ity of cancellation, to a large extent, depends on current
market conditions with regard to the canceled order. A
general formula for conditional probability of order
cancellation is as follows:

P(C, ‘ YoM Mg ) = Al —exp ™) (1—exp™™ ) (K, +b),

where  P(C,|Y; My :N-) i conditional
probability of order cancellation;
y,— is relative position of the order in the

order book;
N, — is coefficient of order book imbalance;

1000

=]
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01

cancellation to relative position of the order in the
order book;

D - is sensitivity of probability of
cancellation to total number of orders;
K, — is sensitivity of probability of

cancellation to order book imbalance;
b —is adjustment to coefficient of imbalance.
Tick size impact analysis shows that there is a
dependence on coefficient K, (see Fig. 11). The coef-

ficient K, characterizes order price sensitivity to the

current market conditions. Order price sensitivity to the
current price position in the market decreases as tick
size goes down.

oV = 1265735174
°® R*=0.9286

Koadduumert 8 popmyne ycnoBHOH BEPOATHOCTH OTMEH

Fig. 11. Scatterplot of dependence of coefficient of conditional probability of cancellation on relative tick size
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In paper [7], we have formulated a method
that enables them to take into account consequences of
tick size changes in order flow properties. The identi-
fied dependencies can be written as follows:

K, =0,94-TS %%
Xyoume = 4,512-TS 0,238
Que =0,185-TS %%
Qopposite =0,416-TS o

Qe =1-0,416-TS °*"® —0,185-TS ***

where K, — is sensitivity of probability of
order cancellation to relative position of the order in
the order book;

avolume

distribution;

Q..ne — is probability of order booking in the
order book (for buy orders, the price is lower the best
ask price; for sell orders, the price is higher the best bid
price);

— is slope of power law for order size

Qupposite. — 15 Probability of order booking on

the opposite side of the order book (for buy orders, the
price is higher the best ask price; for sell orders, the
price is lower the best bid price);

Q.. — is probability of order booking at the

best price (for buy orders, the price is equal to the best
ask price; for sell orders, the price is equal to the best
bid price);

TS is relative tick size in the market.

Laying down the rules regulating a tick size
remains a live issue today. Stock exchanges and finan-
cial market regulators continue to change the rules for
defining a tick size. During the study of this topic, we
have found that the tick size reduction leads to:

e Decrease in average order size in the mar-
ket;

e Increase in the number of trades in the
market;

e Decrease in the number of orders at the
best price in the market;

e Increase in total probability of order can-
cellation;

e Higher sensitivity of probability of cancel-
lation to market situation.

These conclusions are in good agreement with
the results obtained during the real market regulation.

WA
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The proposed method can be used for predicting the
impact of tick size changes on the microstructure of
financial markets.

3.5. Simulation of financial markets

Simulation of complex systems has been suc-
cessfully applied across a variety of research and indus-
try sectors. The first agent-based simulation model of
financial market—the Santa Fe Artificial Stock Market
(ASM) model—was built by a group of researchers at
the Santa Fe Institute in the early 90ies. Being mainly
experimental, the model involved a number of artifi-
cially intelligent agents, or traders, deciding how much
to invest in a risky asset and how much to invest in-
stead in a risk-free asset. Each trader does this by gen-
erating a demand for a financial asset while the asset
price moves in response to an imbalance between its
demand and supply. The ASM model has inspired the
emergence of various similar models demonstrating
different assumptions. However, such models are not
flawless as they rely on a great number of assumptions
and non-empirical parameters. Backtesting for such a
class of models is reduced to selecting parameters
which describe empirical data in the most comprehen-
sive way.

Due to technological advances, researchers are
now provided with much more detailed trading data.
The most complete information can be derived from
transactional data containing entries of all market or-
ders and trades. Within our problem, we have devel-
oped an approach to build simulation models of a stock
market microstructure, which—unlike other comparable
models—can factor in tick size changes made by finan-
cial market regulators as well as limitations or prefer-
ences for a specific class of market participants. Our
stock market microstructure model is based on the
Mike-Farmer zero intelligence model designed under
the guidance of Prof. J. D. Farmer. As demonstrated in
[8], the Mike-Farmer model has a number of limita-
tions affecting the quality and accuracy of the simula-
tion model; it cannot also factor in external influences
such as regulator-imposed constraints. Our simulation
model draws on the Mike-Farmer model while over-
coming its drawbacks. The resulting model includes
two types of agents such as noise traders and high-
frequency traders (Fig. 12).
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Fig. 12. Simulation model of stock market microstructure
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High-frequency traders fall into four types
here: directional liquidity providers (intermarket arbi-
trageurs), directional liquidity consumers (smart order
routing, or SOR), non-directional liquidity providers
(market makers), and non-directional liquidity con-
sumers (statistical arbitrageurs). Each trader enters and
withdraws orders in the market.

Each entered order has a direction, a size, and
a price. To simulate the order direction, we have used
the methods developed by Prof. F. Lillo for reproduc-
* UOB, S5bp.

* KEPCORP. 9b.p

« STEL 31bp
+ GOLDAGRI, 72bp

107

107

KonuuecTso Tukos oT
NyyWeit UeHbl Ha PbiHKe
_

P (OTHocuTenkHas LeHa)

ing a long-memory order flow. Prof. Lillo suggested
modeling the order size as a power law distribution that
allows for simulating large orders coming into the
market along with significant microstructural changes
that result from this inflow. To model the order price,
we considered its distribution from the best market
prices. [9] is the first research publication to suggest
splitting this distribution into three parts in order to
factor in the tick size influence (Fig. 13).
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Fig.13. Distribution of the order price from the best market prices

The order distribution parameters and the u- — Total number of orders in the order book,
shape pattern of the order flow intensity are estimated or n;
fpr each agent. Each ;rader can_cgls order§ with a speci- _ Imbalance of orders in the order book, or
fied probability. Being conditional, this probability n -
depends on the current market situation. We have iden- mb
tified the following most significant parameters that — Relative size of orders, or v, .
can influence the order cancellation process in the fi- The results for each aforementioned character-
nancial market: istic are combined to construct a conditional probabil-
— Position of the order in the order book ity function describing the cancellation process (Fig.
relative to the current market prices, or v, ; 14).
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The order cancellation process is not explicitly
time-dependent however it depends on the state of the
order book. The order cancellation process parameters K
and b are dependent from the tick size for a particular
financial instrument. Order cancellation functions have
also been analyzed for a number of traders identifying
components that are not significant in the order cancella-
tion process. For example, the order book imbalance is

not significant for high-frequency traders who are direc-
tional liquidity consumers. To enable the actual imple-
mentation of our simulation model, we have designed a
dedicated software suite modeling the stock exchange,
its operations, main elements and their interaction. The
model kernel runs on C++.
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Fig. 15. Simulation modeling system, configuration module of the simulation model

Our simulation model enables users to make
scenario changes with regard to preferences and limita-
tions for particular market participants as well as to
analyze market shifts triggered by tick size changes.
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Jaetcst 0030p TEOPETUYECCKUX U MPUKIATHBIX PE3YIbTATOB, MOIYUYCHHBIX B pAMKaX HAYYHOW MIKOJIBI Kadeapsl
«VHbOpMaIMOHHBIE CUCTEMBI M MaTEMAaTHYECKHE METOMBI B 3KOHOMHUKe». O0630p oxBaTteiBaeT nepuosg 2008—2015 rr. B
OCHOBE TEOPETHYECKHX pEe3yJbTaTOB JIEKAT OCHOBHBIC IOJIOKEHHS COBPEMEHHOH TeopuH (YHKIIMOHAIBHO-
nuddepeHnanbHbIX YpaBHEHUH, pa3paO0TaHHOW YYaCTHHKAMU U3BECTHOTO IlepMcKoro cemuHapa mo (yHKIHMOHAIb-
Ho-audepeHnnaIbHBIM YpaBHEHHIM 10T pyKoBoacTBOM mpodeccopa H.B. Asbenesa (1922-2006). B uentpe BHUMA-
HUSI HAXOMATCS 3a1a4d MPOTHO3MPOBAHUS, KpaeBble 3aaud (3aaud JOCTIDKUMOCTH), 3a/a4d YIPABICHUS M 3a7add
YCTOWYUBOCTH JIJIS TUHAMHYCCKUX MOJENEH, YIUTHIBAIOMUX 3 ()EKTHl MOCICACHCTBUS H BO3MOXKHOCTh UMITYJIBCHBIX
BO3ICHUCTBUI (IIOKOB). Il YIIOMSIHYTBIX 33Ja4 MOJYYCHBI MPU3HAKH HX Pa3peIIUMOCTH, MPEUIAraloTcsi METOMBI 110-
CTPOCHUS MPOTPAMMHBIX YIIPABICHUNA U COOTBETCTBYIOIIUX UM TPACKTOPHIA, pa3paOdOoTaHbl CXEMBI U allTOPUTMBI UCCIIe-
JIOBaHUS HAa OCHOBE JIOKA3aTEIHHOTO BBIYMCIHTEIBHOTO SKCIEPUMEHTA, BKIFOUAIONINE aITOPUTMBI KOPPEKIIHMH HCCIIe-
JIyEeMBIX 33134 B cllydae OOHApYKEHHS MX MPOTHBOPEYMBOCTH. Pe3ybTaThl MPUKIAIHBIX pa3pabOTOK UCIONB3YIOT J0-
CTIDKEHUSI TECOPUH U TPEACTABIIOT COOON KOMITIEKC MPOrPAMMHBIX CPEACTB I UCCIICIOBAHUS Ha Pa3pelInMOCTh U
pEIIeHHs PeaTbHBIX 33724 IPOTHO3UPOBAHMUS, JOCTHKUMOCTH, YIIPABJICHUS U YCTOWYMBOCTH JJIsI MOJEJICH COI[HaIbHO-
9KOHOMHYECKOTO Pa3BUTHS cyObekToB Poccuiickoit Denepalini 1 pocCUHCKOW IKOHOMHUKH B IIETIOM.

Kniouesvie cnosa: moodenu dKOHOMUHECKOU OUHAMUKU, 3A0a4y NPOSHO3UPOBAHUS, Kpdesble 3a0ayu, 3a0ayu
YnpaeneHus, UHGOPMAYUOHHO-AHATUMUYECKUE CUCMEMbL, CUCTeMbl NO00ePIHCKU NPUHAMUA DeueHull, NPOSHO3HO-
aHanumuyeckue cucmemvl, GU3HeC-aHaAIUMuUKa, PuHarcosoe Mooderuposanue, PUHAHCOBbIE PLIHKIUL.
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